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1 Executive Summary

This Comprehensive Error Characterisation ReffGECRyives anoverview of all known
errors of the soil moisture datasets as generated by the CCI soil moisture projéds.
report defines the different error characterisation progi@nd describethe errors of the
Essential Climate Variable (ECV) soil moisture dataget®rs related to sensor sensitivity,
scaling and algorithm assumptions are described in detail.

Over the years globab# moisturedata from satellite observatits have been validated with

in situ observationsThis is a challenging task because there is a strong difference in spatial
support. On general two techniqueare used to describe the soil moistuskill Oneis on

the absolute differences (i.e. Root Me&uguare Error, mean average error, mean b&s)

the other on the relative agreement (i.e. correlation coefficients and covariantag
absolute measures assess the effect of random and the systematic error and the relative
measures check on the assoamat of the phasing of the separate datasets.

Other techniques to assess the soil moisture error from coagselution soil moisture
products are error propagion, triple collocation, and Hetrics. An error propagation
analysis is a standardrror tecmique and useshe errors of the input paramters in a
covariance matrix tealculate the errors of the output. This matrix can be estimated with a
Monte Carlo simulation, or in some cases solved analytically.

The triple collocation is a technique to astte the magnitude of the time variable term of

soil moisture, but does not address the bias term. This technique can be applied at global
scale, but three independent datasets are needed with a sufficient long data red®d (
triplets is the minimum bondary, 500 is advised)

Finally,the Rmetric is a tool to quantify the value of soil moisture retrievals. ThadRric is
based on the notion that an overestimate of the simulated error in rainfall would require
removal of water and, vice versa, an undarmnate of the simulated error in rainfall would
require addition of water. The water quantity would generally be a function of soil moisture.

Rmetric is a measure of added skill, sensitive to both the accuracy of a soil moisture product
and the accuracyf a rainfall estimate driving a modbhsed estimate of soil moisture. This

fits in with the notion that measuring the added value of remotely sensed observations
relative to a reference piece of information is important for assessing the highel \alue
associated with an assimilated soil moisture product.

The challenge remaining is to optimize all currently existing, and possibly newly developed,
verification approaches to determine trskillof ECV @il moisturedatasets Parallel to such
quality assessment, a method to harmonize the error budgets obtained by the different
techniques should be developed. Likely, there is no optimal verification technique and the
optimal methodologyprobablylies in combining the variougthniquesasdiscussed in this
document.
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2 Introduction

2.1 Purpose of the Document

The Comprehensive Error CharacterisatiBeport (CECRshall provide a comprehensive
overview ofall knownerrors of theEssential Climate VariablEQY soil moisture data set

to be generated by theCCl Soil Moisture project. A good understanding of all errors is
essential to distinguish real trends in the soil moisture time sefiies artificial trends

caused by changes in space instrumentation, sensor degradaiahretrieval errors.Yet,

our understanding of errors is far from complete. Additionallyeg the significant natural

variability of soil moisture on shotime- and space scales, detecting drifts in the absolute

value, dynamic range, and accuracy of the EC\hsmgture time series can be expected to

be very challengingrhis document ishusintendedi 2 6 S | Gt A @A ywdll beR 2 OdzY S
updated on a regular basis to account for new theoretical insights and validation results.

2.2 Targeted Audience

This documentargets mainly

1. Remote sensing experts interested in the retrieval and error characterisation of soll
moisture from active and passive microwave data sets

2. Users of the remotely sensed soil moisture data sets who want to obtain a more in
depth understandingf the errors

3 Reference Documents

[RD1] ESA Climate Change Initiative Phase 1, Statement of Work for Soil Moisture g
Sheets, European Space Agency, EOHFEOPSW11-0001.

[RD2] | Technical Proposal (Part 3) in response to ESA Climate CharigévéniPhase ]
ESRIN/AOMB782/11/FNB, Vienna University of Technology.

[RD3] ESA Climate Change Initiative Soil Moisture Algorithm Theoretical Baseline Doc
(ATBD) version 0, European Space Agency
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4 Definition of Terms

Term Definition
Error The actual difference between the measunalueand the true value.
Uncertainty The component of a reported value that characterises the intervg

values within which the true value is asserted to lie.

Validation The assessment process through which it is determined whethel
model accurately predicts the observed phenomena within a cer
margin of an error, the error being computed as the differer
between themeasuredand the true.

Absolute accuracy The acaracy associated with comparison between a serdamived
estimate value of soil moisture, and a soil moisture value obtai
from an insitu measurement. A measure of absolute accur
incorporates both the relative accuracy, and the uncertai
associatd with sensoticalibration standards.

Relative accuracy The accuracy of a soil moisture measurement derived from
AYKSNBYG AyadaNdzySyd F OOdzNI O

standards, and not #situ soil moisture measurements. As such
does not incorporate the uncertainty associated with seRg
calibration standards.

Precision The reproducibility of the measurement.

Stability The ability of the measurement to maintain constant over a sta
time.

Representativeness The degree to whiclthe smaller sample of data that was extract

from a larger dataset and subsequently tested, is similar to the Ig
dataset (representative of the population data) in terms of the ray
of their statistical summary measures.

Error cevariance matrix A statistical tool which allows one to study the structure of covarian
amongst different error terms.

Sensitivity Change in the response of a measuring instrument divided by
corresponding change in the stimulus.

5 Sources of Errors

Errors have diffrent sources, some of them are related to sensors and scaling, and others
are more related to the described algorithms. A more thorougbkatiption of the sources of
error contributing to uncertainty in the data produatan be found below.
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5.1 Instrument -Related Errors

5.1.1 Microwave radiometers

The radiometer calibration accuracy budget, exclusive of antenna pattern correction effects,
is composed ofour major contributors: warm load reference error, cold load reference
error, nonlinearité Land errors with rdiometer electronics.

The following factors contribute to the warm load reference error:

Accuracy of the platinum resistance thermistors (ARTs
Temperature gradient over the load area

Loadfeedhorn coupling errors inherent in the system design
Reflections from the feedhorn caused by receiver electronics

= =4 —a -8

The cold load reference error is primarily caused by coupling between the goleftdctor
and the feedhorn.Other factors include the reflections from the feedhorn caused by
receiver electronics and the resistive lossethef cold sky reflector itself.

The main factor responsible for néimearity in radiometer electronics is imperfections in
the squarelaw deector. This noHinearity results in an error that is easily estimated during
the thermal vacuum calibration testing. The receiver's electronics produce a gain drift due to
the temperature variation over one orbit, depending on the design of the receawer
overall design of the sensor.

The radiometric sensitivity of a sensor can be estimated and is disaribed in literature.

The sensitivity is estimated by computing the temporal root mean square amplitude of a
particular pixel in the image, when aftwing a constant targefTable 5.1gives an overview

of the radiometric sensitivity of the different radiometers.

The sensitivity between different sensors varies significantly, with relatively low errors for C
(~7 GHz) and X (~11 GHz) band observatitretween 0.30.8 K) and higher instrumental
errors for kband (~1.4 GHz) sensors (between-8.5 K). the main reason for this error is
due to the lower natural emission atldand, compared to C and X band and a more complex
antenna is needed to measurbd emission at 1.4 GHz, resulting in a lower sensitivity.
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Sensor Period Frequency (GHz) Radiometric Geolocation

Sensitivity (K) error (km)
NimbusSMMR?  Oct 78 Aug 87 6.6, 10.7, 18, 21, 37 0.7,0.8,09,1, 1.4 12
DMSPSSM/F* Aug 87 present  19.4,22.2, 37, 85.5 0.8,0.8,0.6, 1.1 8
TRMMTMP Nov 97 present 10.7,19.4,21.3,37,85.5 0.3,0.4,0.5,0.4,0.5
AQUAAMSRE™’ Jun 02 Oct11  6.9,10.7,18.7,23.8,36.5,8 0.3,0.7,0.7,0.6, 0.7, 1.z 0.4251.425
Coriolis Windsdt®®  Feb 03 present 6.8, 10.7, 18.7, 23.8, 37 0.5,0.4,0.4,0.6,0.5 1-3
SMOS’ Nov 09 present 1.4 1.54.5 0.4
Aquarius® Apr 11 present 1.4 0.5 <15 km
SMAP? 2014 ? 1.4 15
GCOMWAMSR I Jun 2012 6.9, 7.3, 10.7, 18.7, 23.€ 0.3,0.3, 0.6, 0.8.5, 0.5,

36.5, 89 1

'Gloerssen and Barath, 1977Choudhury et al., 1992°www.ssmi.com;*Goodberlet and Swift, 1992trmm.gsfc.nasa.gov;
®ghce.msfc.nasa.govWiebe, 2007 %Gaiser et al., 2004%Purdy et al., 2006°Martin-Neira et al., 2010 'Cabot et al.,2007
aquarius.gsfc.nasa.goVsmap.jpl.nasa.goVhttp://sharaku.eorc.jaxa.jp/AMSR/ov_amsr/sensor.html

Table 5.1: Overview of the
Sensors .

radiometric sensitivignd geolocation erroffor different passive microwave

Another source of error relatetb the instrument deals with the geolocation. Geolocation is
the process of determining the geographic latitude and longitude of the center point of the
footprint. Geolocation of satellite data is a standard part of the past launch calibration
process (Puy et al., 2006) and gives insight in the absolute mapping skill of the sensor. The
geolocation error is related to the accuracy of the incidence angle, polarization rotation
angle, scan azimuth angle, spacecraft attitude and GPS data. In taldis®&the different
geolocation errors are giverlnfortunately, geolocation errors are hard to find in literature
and it is not always clear how these errors are obtained. Therefore a geolocation error
assessmentor different satellitessensors (in relationa frequency and bandwidth)s
recommended

A final error related to the satelliteaystem is the orbital decay. Especially the early sensors
SMMR and SSM/I suffered from this. Orbital decay is the process of prolonged reduction in
the altitude of a satellg's orbit. This can be due to drag produced by an atmosphere due to
frequent collisions between the satellite and surrounding air molecules. For the Nimbus 7
SMMR satellite, the orbital decay resulted in an observationiftl o a few kilometers over

its entire lifespan. Orbital decay can be a serious issue for trend analysis because it can
create artificial trendsn datasets(Wentz and Schabel., 1998)

5.1.2 Scaterometers

Scatterometers are real apertures radars with a set of antennasattstnit pulses oénergy
to the Earth surface and precisely measure the backscattered energy. Backscattering
characteristic of the target is deduced by the aid of the radar equation considering the ratio
of backscattered and transmitted energy, distance to the target, usadelength and the
antenna gain. Systematic errors like degrading transmitter energy, noise, antenna miss
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LRAYOGAY3 2NJ I RSINIYRAY3I alaSttAdS |t dAGdzRS
estimate.

Therefore, two calibration strategies were introtkd to monitor the radiometric accuracy
and the radiometric stability of the instrument.

1 Internal calibration
1 External calibration

On board internal calibration is performed to compensate for contribution of thermal noise
to the backscattered energy andlioration pulse measurements to monitor variations of
the transmitter power and the receiver gain. Hence, this calibration strategy is used to
monitor and detect any anomalies of the instrument behavior. Internal calibration data is
used to correct for tese anomalies during ground processing of the downlinked raw data.

External calibration of the instrument is performed to ensure that the backscattered energy
measured by the instrument is correct (absolute calibration) for all incidence angles (relative
calibration). External calibration is done in a separate calibration mode of the instrument,
using ground base transponders which are active devices with a precisely known radar cross
section and location. The instrument receives the transmitted transpopdése which can

be analyzed to establish a reference calibration system to monitor the system performance.
Furthermore any antenna migminting can be detected due to the accurate knowledge of
the transponder location. A second external calibration sggtis using natural distributed
targets (e.g. rainforest, ocean or sea ice) to monitor or correct for variations according to the
incident angle. This method allows a relative calibration based on models developed for
these natural targets.

Especially exdrnal calibration enables the determination of the radiometric accuracy, inter
beam stability and locatn accuracy. Table 5.8ummarizes these properties for both
scatterometers on board of MetOp and ER3.

Performance Parameter Units MetOp ASCAT ERSL/2 AMI WS~
Number of Swath 2 1
Spatial Resolution:
Nominal km 50 50
Experimental/High Res. km 25-37 25
Radiometric accuracy dB 0.47 to 0.55 -
Inter-beam stability dB 0.33t00.41 0.46
Radiometric resolution % 3.0 6.5¢7.0
Locationaccuracy km 4.4 5

'Gelsthorpe, R.V., Schied, E., and Wilson, J.J.W. 2000.-ASCATH LJQa | RS yOSR a0l GGSNRYSGSN® 9
<http:/lesapub.esrin.esa.it/bulletin/bullet102.htm3Naeimi, Vahid, 200®hD Thesis, Model improvements agwlor characterization for
global ERS and METOP scatterometer soil moisture data, Technische Universitat Wien

Table 5.2 Overview of Scatterometer Performance
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5.2 Algorithm -Related Errors

AMSRE was the first widely used passive microwave radiometer to bd f@ethe retrieval

of soil moisture, therefore several algorithms exist (Njoku & Chan 2006; Paloscia et al., 2006;
Owe et al., 2008; Jackson et al., 2004). Most of these algorithms are based on the radiative
transfer theory of Mo et al. (1982) who des@tba simple physically based model that can
effectively estimate the radiation by the soil surface, even if this surface is covered under
@SASGHI GA2Yyd {dzOK NI RAIF GAGS (NI y¥aFBNRSi2R SIf yaR |
used for describing the eng®n of microwave radiation from the soil surface as observed
from above the canopy. These observed brightness temperatures are the sum of three
terms: the canopy attenuated soil emission, the vegetation emission reflected by the soll
and attenuated by theanopy and the direct vegetation emission. Other retrieval algorithms
use a completely different approach called neural networking. This is based on feeding
models with large amountsfalata to train them in recogniag data relationships, than the

soil moisture retrieval algorithm can tell the network how to behave in response to an
external stimulus.

DSYSNIffesxs &aSOSNIft |aadzvlliAzya- I NRRSt RO Fé:
assumptions may lead to algorithm related errors, and some examplesddeessed in

more detail. One of the assumptions all radiative transfer based approaches have in
common is related to the thermodynamic temperatures of the soil and canopy. The land
adzNF I OS GSYLISNI dzNBX YEROKA R AA & ¢ lardadmBddR T2 NI ¢
GKSaS® hiUGKSNI AyLIziY2ARNT &S i SdBK FR2N) § KS aAy3If
surface roughness, lack detailed information which leads to several assumptions.

Assumptions made in the neural networking approach are different instirese that they

R2y Qi KI @S |ye LKeaAOlt oF O] 3aANRdzyRd ¢ NI AYAYy
assumption that the training data represents the hypothetical truth to find optimal
convergence based on empirical relations.

The WARP algorithm used fASCAT processing employs a simple ssnpirical model to

obtain normalised from raw backscatter values, which are then related to the historically
lowest and highest normalised backscatter values at a given location. The model rests on
several assumptionsvhich, when violated, will result in inaccurate or even meaningless soil
moisture estimates. For example, a key assumption is that backscatter expressed in dB is an
increasing linear function of the soil moisture. However, it was observed that in some
locations under extremely dry conditions, backscatter may actually increase rather than
decrease. The presence of snow, ice or open water bodies poses similar problems. These
cases have to be detected and flagged accordingly.

The above modelling errors areoted in a discrepancy between the real physical processes
we are interested in, and our incomplete understanding and possibly oversimplified
description of these processes. A related issue is the noise model, which deals not so much
with the physical pameters we want to retrieve, but with the uncertainty of our knowledge
about them. It describes how the uncertainties in the original measurements transform
along the processing chain and thus affect the uncertainty of the final product. In WARP, this

10
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is done mainly via error propagation (see 6.1). The noise model, like the physical model, has
to rely on assumptions that may not always hold in practice, but are made to allow for a
more efficient implementation of the algorithm. For example, in the WARPrerr
propagation scheme, second order dependencies between input variables are often
neglected, i.e., they are assumed to be uncorrelated.

5.3 Scaling Errors

Recently, significant progress towards operational soil moisture remotsirsgrproducts

was made which resulted iseveral data set®avingglobal coverage. Howeveaccurate
estimates of error structuresare still needed for these datasetScipal et al. 2008).
Validation against in situ observations is difficult because the observatiano$ien spana
limited geographic regionhere is always anismatch between thesmall support of the
point-scale in situ measuremergnd the large support ofremote sensing data products.
Additionally, several studies showed that uncertainties of remotdnsed soil moisture
products differ per climate regimdn remotesensing applications, as in physically based
modelling of lanesurface processes, the representation (inclusion) of sukspade
variability in coarse redution data remains ahallenge.The problem is one of spatial
interpolation, upscaling or downscaling. Essentially this is a result of the discrepancy
between the coarse spatial scales (and often temporal scales) of available data and the fine
scales necessary for meaningful researct applications.

Soil moisture influences a range of environmental processes in a nonlinear manner leading

to scale effects that need to be understood for improved prediction of moisture dependent
processes. Similarly, several spatially and temporal vaimgronmental processes (e.g.
hydro-meteorological variables, suds precipitation and evapotranspiration) influence soill

moisture itself. According to Bloschl & Sivapafmnbdpp 0 02 0K YSIF adz2NBYSy i a
scale can be thought of as consisting of a triplet of characteristics: support, spacing, and
extent.

1) Supportis the area (or time) over which a measurement averages the underlying
variations, or over which a model asses homogenous conditions. As support
increases, variability decreases due to the effects of averaging, and-srakdl
features disappear.

2) Spacingis the separation between points at which measurements are made or
between computational points in a modeAs the spacing increases, the amount of
detail resolved decreases, leading to an apparent increase in the spatial size of
features. Quié counterintuitively Western & Bloschl 1999 show that, the variability
in the data isapparenty unaffected.

3) Exten refers to the total coverage of the measurements or model computational
domain. As extent increases, larger scale features are included in the data, and both
the variability and the average size of the features tend to increase.

11
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Figure Slillustration d each component of the scale triplet.

In theory these problems typically involve using information from one scale to make
predictions at a scale that has a greater information requirement; i.e., taking sparse data and
estimaing intervening values, takjreal averages and disaggregating, or taking results at
small extents and extrapolating to larger areas. Also, scaling often involves changing more
than one component of the scale triplet at a time (e.g., often both support and spacing
change together) (\stern et al. 2002). The practical challenge in reference to the CCI soill
moisture project is to take sparse data and estimate intervening values from relatively
sparse irsitu measurements, while averaging those values over a relatively large (Land
Surfae@ Model grid cell or remote sensing data grid cell) area. The essence of successful
scaling is to filter the key patterns from information at support scale and to use these to
make good predictions at model and or remote sensing data scale. These typ#erts
usually rely on a suite of relevant auxiliary information ranging from digital elevation models,
land cover characteristics to meteorological time series data (Western & Bloschl 1999).

5.3.1 Spatial Scaling Issues

Spatial scaling techniques can be divided into behavioural techniques and phzseEss
techniques. Behavioural techniques focus on quantifying the apparent observable behaviour
of soil moisture patterns as a function of scale and to use this quantificadigredict the
effects of changing scale. These techniques rely on data and statistical analysis, which may
be combined with a conceptual understanding of process controls through the use of
ancillary data. In contrast, procebssed techniques aim for @eeper understanding of the
physical processes causing the spatial patterns of soil moisture. They utilize a conceptual
understanding of soil moisture process and physics, usually within a deterministic
reductionist framework of distributed water balaneeodelling and or Land Surface Model,

to predict the effects of changing scale. At small scales, soil moisture responds to variations
in vegetation (Qui et al. 2001), soil properties (Famiglietti et al. 1998), topographically driven
variations in lateral 8w (e.g., Dunne & Black 1970a,b), radiation (e.g., Western & Bloschl
1999), and precipitation.

As spatial scale increases, different sources of variation become apparent. Variation in
vegetation shifts from plant to patch scale and then finally to comityuscales. Soll
properties vary as different soil types and geomorphological features interact. Variations in
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rainfall patterns can occur at spatial scales as small as hundreds of meters due to the
passage of storm cells (Goodrich et al. 1995)); howeJss, longterm effect on soil
moisture variability may be observed at larger space scale as the soil profile stores
precipitation over time and thus tends to smooth some of the spatial and temporal
variations in instantaneous rainfall rates. Obviously, atisih scales of several kilometres,
examples of soil moisture variability are evident due to spatial variability in event rainfall
depth.

At still larger scales, climatic variability and variations in precipitation depths lead to
substantial changes in Bomoisture conditions between climate regions. Variations in
humidity, temperature and radiation also have an effect on soil moisture through
evapotranspiration processes. All of the factors affecting the distribution of soil moisture
discussed above areorrelated in space to some degree. For example, rainfall depth and
intensity is likely to be more similar for two points 1 m apart than for two points 1 km apatrt.
These spatial correlations form spatially correlated soil moisture patterns. Lateral
redistribution of soil water also increases spatial variation and correlation (Western et al.
2002)

Lateral moisture fluxes present a specific problem and soil moisture estimate error source
for most Land Surface and Hydrological Models applicable on mesostédstscale
models, even if distributed, cannot usually take into consideration lateral moisture transport
from one computational node to another. Instead lateral moisture transport is usually
handled by a separate routing model. In essence usually this sn#aat lateral moisture
transport is assumed to exit a Land Surface System, and only exist in a stream network (or
being routed to one, by the routing model), once it is determined to have left a particular
cell.

5.3.2 Temporal Scaling Issues

The largestemporal scale feature of a time series is seasonal variation in soil moisture. This
occurs in response to seasonal changethe balance between evapotranspiratioBT) and
precipitation. Overlaid on this seasonal cycle is a series of wetting and grgrags with

time scales related to storm duration and irtstorm periods, respectively. The rate of
depletion during drying periods is mainly related to the rate of evapotranspiration and
drainage divided by the rooting depth. The contrast in the rateshange for increasing and
decreasing soil moisture is primarily related to differences in flux magnitudes in precipitation
and evapotranspiration processes (Western et al. 2002).

Grayson et al. (1997) discuss the theoretical presence of preferred stathe temporal
distribution of soil moisture. Wire ET dominates over precipitation, soil moisture tends to
be consistently low. Similarly, wheeprecipitation dominates oveET, soil moisture tends to

be consistently high. This behaviour is a consequeoicéhe bounded nature of soil
moisture. In many landscapes there is a seasonal shift between these two states. In
landscapes where there is significant lateral movement of water, this temporal behaviour
corresponds with a change in controls on the spasiail moisture pattern from being
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dominated by local vertical fluxes during the dry state to being dominated by lateral fluxes
during the wet state.

6 Error Characterisation Methods

6.1 Error Propagation

Error propagation is a standard technique for estimatthg noise of quantities inferred
from noisy data. Leb w8 o be an actual glimensional observation vectox is
assumed to be an instance of adpnensional random variable, with known covariance
matrix 4. We are interested how the covariamdransforms under a mapping "Qo ,
i.e., givenx andf, we would like to know the covariance pf’A. If f is a linear mapping of
the formo "A0 "Hthen the covariance transforms like

A AR (6.1)
whereby’A denotes the transpose oA

If, on the other handf is a nonlinear mapping, we first lineariseby replacing it by its first
order Taylor approximation about the operation point:

: : 2

« Bo Ho. F o o (6.2)
whereby the matrix - with elements
-1

0

(6.3)

is theJacobiarof f. Putting everything together, we finally obtain

1

n  An 2B (6.4)
for the covariance matrix of under the mappind.

Error propagation is a general, conceptually simple and widely useditgad for obtaining
error characterisations. It only requires that

1 the covariance matrix of the inputs is known
1 the Jacobian of the transformation that acts on the inputs can be computed.

In practise, it is also often assumed that that inputs are undateel (or the correlations are
negligible), which will simplify the computations involved. In cases where the transformation
is socomplex that its Jacobian with relation tiee inputs cannot be obtained, a Monte Carlo
approach could be employed alternatly (however, this is often computationally
prohibitive).

A possible shortcoming of error propagation is that it characterises the error distribution of
the product solely in terms of its covariance matrix. If the full error distribution is required,
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this could be obtained either empirically using Monte Carlo, or analytically, for example,
within the Bayesian framework.

6.2 Standard Statistical Measures

The interest in evaluation studies ofimatological and environmental moddhtasetshas
grown rapidly(Wilmot and Matsuura, 2005)Such evaluations provide the basic meah
assessing the performance of models and algorithmteresthasalsoarisenin determining
which statistical measures should be recommended and how these differ based on an
applicaton. The commonly used evaluation measures in soil moisture campaigns are the
correlation coefficienR (Brocca et al., 2010nd RMSHJackson et al., 2010Regrettably, it

is the RMSE that is also the most misinterpreted error meafmecca et al., 21D).

This section introduces and interprets the commonly used evaluation statistical measures.
Measures of standardisation (Unit Transformation, Linear matching, CDF matching, and SWI
computation) are firstly outlined as a clear understanding of stawmlitation methods is
essential to deriving an appropriate error evaluation approach. This section then introduces
and interpretsmeasures ofabsolute difference (RMSHEjean average errgrmean biaj
followed by thoseof relative agreement (R,”’Rnd R and Covariandebetween the models

and the algorithms, which form the basis of current error evaluation of Sateliteved soil
moisture datasets. It is notable that W& the absolute measures assess the effect of
random and the systematic error, thelative measuresppraisethe association of phasing
between the separate datasetsFurthermore, relative measures usually normalize the
absolute measure by dividing it either by the dataset itsetfby its variance or standard
deviation. In doing sq it makes it spatially comparable and independeifittioe absolute
magnitude.

6.2.1 Statistical measures of standardisation

Soil moisture products can be (i) derived from the remotely sensed datasets, (i) measured
in-situ at ground level, or (iii) modeled with tlmeodels describing water dynamics and water
use. This variety of different estimatetrieval and modeling strategies can result in there
being notable differences in the represented a) depth, b) spatial extent and c) units. Such
differences prevent measurg an absolute agreement between the tirseries(Brocca et

al., 2011)and assimilation of the dataset into mode{Bee & Todling, 2000)and are
commonly removed using a set of transformation steps.

In this section, fourtransformation or standardisation measuresre summarised, which
serve to minimise the systematic differences in the soil moisture datasets. These include:

1 Unit Transformation the conversion of the dataset values into values of volumetric
soil moisture,

1 Linear matching removing the difference in the mean or in both the mean and
variance of two timeseries,

15



* < 0il moisture Comprehensie Eror Characterisation Version 0.7
ﬁ Report (CER Date21 May 2012

1 Cumulative Distribution Function (CDF) matchiagonlinear approach which
applies mathematical relationships to convére climatology of one dataset into a
second dataset,

1 Soil Waterindex (SWI) computatioran approach that simulates soil moisture at
deeper layers using an exponential filter.

The Table 1 suggests which of the latter methods should be used to remove systematic
differences caused by scaling, the differences in depth and the differences in units.

Tablel. Sources of systematic differences between soil moisture datasets and suggested methods for
their removal.

Source of Systematic difference Method to remove it

Differences in scaling CDF matching

Linear matching

Differences in depth SWI filtercomputation
CDF matching

Linear matching

Differences in units Unit transformation

6.2.1.1 Unit transformation

The soil moisture products can originate fromsitu measurements, from estimates derived
from earth observation sensors, and models based on wdygamics and water use. This
can lead to values being expressed in variety of units. The transformation of these units into
a comparative format is a critical prerequisite for successful evaluation of the soil moisture
datasets. This summary briefly intnaces the most frequently used soil moisture units, and
presents methods for their transformation to the volumetric unit.

The most commonly used soil moisture unites are the volumetric units. These express the
volumetric fraction of water in a given soipth [m* water per nt of soil] or the depth of a
column of water contained in a given depth of soil [mm water per mm soil]. The volumetric
fraction ranges between 0 (completely dry) and 1 (full saturation) and is used in a large
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number of soil moisture netorks (i.e. OzNet, REMEDHUS or the AMMA) and satellite soil
moisture products (Advanced Microwave Scanning Radiometer (A SBpecial Sensor
Microwave Imager (SSM/I)). To convert the brightness temperature retrieved from the
satellite products to volumteic units the Land Parameter Retrieval Model developed by the
NASA and the VU University of Amsterdam (LPRM) igseet al., 2008)

Soil moisture datasets can also be expressed in relative units, which are commonly used for
microwave satellitederived soil moisture products. These present a measurement of the
change in the retrieved signal relative to its maximum dynamigeai\n example of such
dataset is the Earth Resource Satellite (BR&)ner et al, 1999a) the Advanced
Scatterometer (ASCA{Bartalis et al., 2008r the Advanced Synthetic Aperture Radar ASAR
GM (ASAR GM) soil moisture prod(Patheet al., 2009) The backscatter measurements

are converted to soil moisture estimates lpplying the TU Wien soil moisture retrieval
algorithm(Wagneret al., 1999b)

Another furtherunit for expressing soil moisture is the Gravimetric Water Content defined
4 0KS NYXaGA2 o0SGsSSy (GKS Yl aa 2&a®bil)Se | yR
gravimetric method is a commonly used method for calibration of other indirect
measurenents. Less common soil moisture measures of soil moisture are the Fraction of
Saturation and the Plant Available Water (PAW). Fraction of saturation (Cox, 2001; Topp &
Ferré, 2002) is defined as the fraction to which the pores are filled with water. Sdilly
contains a pore fraction of less than 0.5. If this fraction is completely occupied by with water,
the soil reaches its maximum soil moisture saturation. A useful definition to envision the
Fraction of Saturation is defining it as the volume of wdtewvolume of voids. The PAW
represents portion of the soils water holding capacity that is available to be absorbed by a
plant (Ritchie, 1981; Sadras & Milroy, 1996).

Volumetric units are becoming standard soil moisture units in the Earth Obsen(&arigo

et al, 2011)and have been selected as the reference standard for unit transformation. Here,
a set of transformation techniques are presented that serve to transform ttrednced soil
moisture measurement units, to standardised volumetric soil moisture units.

The conversion ofravimetric soil moisture to volumetric soil moistuseachieved using the
expression:
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— 0N (6.2-1)

where my and my represent the dry bulk density and water density respectively, and
representsthe gravimetric soil moisture value. As in the equat{6r2-2) the quality of the
ancillary parameters strongly influences the quality of the final product. The conversion
technique is highly applicable long homogeneous climatological recdbock et al.,
2000) Currently, most systematic observations are based on indirect methods; however,
calibration typically requires using the gravimetric meth{ddorigoet al., 2011) An example

of the network using this gravimetric method is the IOWA network in southwest (Bwan

et al., 2000; Robock et al., 20Gf)the RUSWEAGRO and RUSWEALDAI networks in the
former Soviet Union.

The transformation of thé AW to volumetric soil moisture achieved using the expression:
— 006w — h (6.2-2)

where PAWrepresents the Plant Available Water aiélr the permanent wilting point.
Below the wilting point, water is retained by the soil matrix and is not accessible to plants
(Hilel, 1982) The wilting point depends on soil properties such as soil texture, and varies
geographically.

The conversion of th®egree of Saturation to the volumetric soil moistigr@chieved using
the expression:

— ©0h (6.2-3)

where Pdefines the total porosity antk, the volumetric soil moisture. It is evident that the
quality of the conversion strongly depends on the quality of the porosity estimate.

Soil moisture data retrieved from the ERS, ASCAT and Met€xiellites are provided in
relative units. These can be directly converted to the absolute volumetric (Mitsdenova
et al., 2010using following expression:
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YO —p &~ — —h (6.2-4)

where SMrepresents the absolute soil moisturg, and m, the dry soil bulk density and
density of soil particles respectively, andg: represents the residual soil moisture. For a

high quality estimate of the volumetric soil moisture also the three ancillary parameters
need to be of high quality. In the case of only low quality estimates being available, other
transformation methods neetb be used such as the CDF or the linear matching.

The unit transformation methods do not account for the shortcomings of the ancillary data
(i.e. texture, porosity, and organic matter content). They also do not account for the
shortcomings of the measumeent technique itself and for the differences in scaling and
depth of the different measurements. To limit the data usage restrictions implied by such
shortcomings, methods such as Linear Matching and Cumulative Distribution Function (CDF)
Matching are use.

6.2.1.2 Linear matching

Dissimilarities in the estimateetrieval and modeling strategy can introduce differences in
the represented depth and spatial extent, and consequently in the mean and variance of soil
moisture datasets(Dirmeyer et al, 2004; Entin eal., 1999) To allow for comparative
evaluation of the distinct datasets, such differences should be rech{®mccaet al.,, 2011)
Likewise, a removal of a bias is recommended for data assimilation techn{fees &
Todling, 200Q)allowing for statistically optimal analyses. To remove the differences in the
mean and variance a linear matching technigque can be useda Femoval of higher order
moments a nodinear Cumulative Distribution Function (CDF) matching approach is
recommended

For linear matching two approaches are commonly used. The first is based on the application
of a regression equation between two evatad datasets, minimising the RMSE (RMSD)
between the compared datasets, and removing the differences in médasksoret al.,

2010)
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A second approach removes differences in both the standard deviation and the mean
(Broccaet al.,, 2010; Drapeet al., 2009) In particular, he matched datasey is computed
using pairs ofx, ¥,) as follows:

i 0 QA

wherei =1,...n, nis the total number of elementsy is the mean of alk,, wis the mean
of ally; andx represents the rescalexl,. The formula can be rewritten into a linear form as

®w oO6w g O, (6.2-6)

where the local coefficients A and B are defined as

5 o | 000
[ 0 0@y (6.2:7)
and
| 6 Q@0
[ o 0@y (6.28)

Here, parameter B mirrors the difference in the variability of the individual datasets, whilst
parameter A reflects a combination of differences of both the variability and the mean.
Implicitly, these parameters also refer to different soil types, landec@nd climatgScipal,
Drusch, & Wagner, 2008)mportantly, the transformed dataset automatically shares the
climatology of the reference data or a model.

6.2.1.3 Cumulative Distribution Function (CDF) matgh

The nonlinear version of the matching functiois the Cumulative Distribution Function
(CDF). This removes the differences due to different depth, scaling and calibration by
applying mathematical relationships that transfortine climatology of one i a second
dataset. It is performed by matching the cumulative distribution functions of two datasets,
using a linear or polynomial fitting. Depending on the order of the fitted polynomial,
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equivalent number of moments is mitigated. For example,ac8er polynomial could
correct differences in the first four moments (the mean, the variance, the skewness and the
kurtosis)(Druschet al., 2005)

The actual computation of the CDF function is perfed in three separate steps.

(1) The datasets are ranked.

(i) The differences in soil moisture between the corresponding ranks of the two
datasets are computed.

(i)  The observation operators are computed as a polynomial fit between the
computed differences and the ranked observed soil moist(Peusch et al.,
2005) These remove the systematic differences between both datasets.
Importantly, the observation operators are defined by the type of the
observations, in particular, by their specific statistical properties and distributions
(Drusch et al., 2005)

If the statistical distribution of thelata allows, and if only small differences are expected in
higher moments, linear matching is preferable to more computationally demanding CDF
matching.

6.2.1.4 Soil Water Index (SWI) computation

This exponential filter can be used to account for differencenmcliby variations in depth

of different soil moisture measurements. It simulates the soil moisture value deeper soil
layers, on the basis of the soil moisture measurements of the shallow soil moisture, and an
exponential profile designed to mimic fluctuans in soil moisture over a scale of
progressively greater soil depth. The filter relies on the analytical solution of a differential
equation and assumes that the variation in time of the average value of the soil moisture
profile is linearly relatedto the difference between the surface and the profile values
(Wagner, Lemoine, et al., 1999 this study the version of th8WIlintroduced by(Albergel

et al.,2010)is used

YOO YOO U YYD YOO (6.2:9)

with the gainkK, at timet,given by
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. 0 .
v p— (6.2-10)
U] Q

where T is a characteristic time length that characterize the temporal variation of soil
moisture within the rootzone profile and the gairk, ranges between 0 and 1. For the
initialization of this filter Ko=1 andSW§ = SSM(§).

6.2.2 Measures of abslute agreement

Measures of absolute agreement are expressed in the units of the original datasets and refer
to the positive magnitude of two variables dissimilarity. The measures outlined here provide
informative summaries of variable dissimilaritieghin comparative soil moisture datasets.

The most frequently used include Mean Absolute Error (MAE) and Root Mean Square Error
(RMSE), however there also exist other derivative measures which together allow us to
explore and ascertain the nature of absauerror associated with satellitderived soil
moisture datasets.

These measures should be interpreted carefully as they are influenced by the mean and
variance of the datasets. For example, the increasing MAE and RMSE can be explained by
increasing error in the datasets. However, an increase in the mean or variancalscan
potentially contribute to their value.

A brief summary of the current measures of the absolute agreement is provided here. It
should be highlighted that prior consideration of gveocessing steps should always
accompany the use of the absoluteeasures. For example, it of limited use to characterise
bias in applications where data matching is applied, given that matching removes the
difference in the mean and variance.

6.2.2.1 Mean Absolute Error (MAE), Mean Bias Error (MBE), and Mean Percentage Erro
(MPE)

The first measures of consistency between two datasets are the Mean Absolute Error (MAE)
and Mean Bias Error (MBE), and by extension, Mean Percentage Error (MPE). All are
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absolute measures of error, and do not normalise the final result. The Méaolute Error
(MAE) of a sample efmeasurements:

(6.2-11)

where x,and y; are two continuous variables witl being the representation of the true
value. The measureeturns the average absolute magnitude of each difference. In selected
situations however, it is useful to know the positive or negative nature of the error. In such
circumstances it is useful to use Mean Bias Error (MBE) the calculation of which ig@chiev
using the expression:

OO o (6.2-12)

where xand y are two continuous variables witl being the representation of the true
value. MBE should be interpreted cautiously (Willmott & Matsuura, 2005), as it indicates the
average model bias. For example, two independent datasets with the same mean can result
in an MBE approaching zero.

For conmunication purposes, it can also useful to express MBE in a percentage format.
Mean Percentage Error (MPE) can be derived using the formula:

pm m @ (6.2-13)
W

™| ©

for n samples, wkre xand y are two continuous variables, anglis the representation of
the true value. In contrast to MAE and MBE, MPE isdiorensional in nature, expressing
error without the constraints of units.

6.2.2.2 Root Mean Square Error (RMSE) and Root Mean &fifierence (RMSD)
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Root Mean Square Error (RMSE) is currently the most commonly used absolute measure of
accuracy in case of unbiased or matched datasets, and precision. It has been used in
previous evaluation studies of soil moisture datasets (Jacksah,e2010; Doubkavet al.,

2012; Dubois et al., 1995; Walker & Houser, 2001), with its use playing an important role in
the assessment of mission performance criteria for the SMOS (Soil Moisture and Ocean
Salinity) and SMAP (Soil Moisture Active Pajsmissions (Miralles et al., 2010). RMSE
signifies the closeness of two independent datasets representing the same phenomena, one
of which represents the true set of valuda. the situation where none of the independent
datasets are assumed to be trudiet term Root Mean Square Difference (RMSD) is applied
(e.g. Lakschmet al., 1997). In this sense, RMSD provides information about the data
preciseness, but not about their accura@oth measures are defined for twoontinuous
variablesx andy; as follaws:

e A B ® (6.2-14)
Y0 Yoo YO —————h

whereil' M X &ndnis the maximum number of measurements. Both alter the magnitude of
each difference through its squaring and subsequent rooting. The squaring is performed to
remove the potential negative value. However, this has the potentially negative
consequence of gudratically penalising the bias between parameters.

It should be noted that the RMSE and RMSD reflect not only the average error but also the
variance in the error and the number of data point (Willmott & Matsuura, 2007) i.e. they
become increasingly lagg than the Mean Absolute Error (MAE) as the distribution of the
error magnitudes becomes more variable. To assess the-Essegerformance of the RMSE

the central tendency in the RMSE needs to be removed. This can be achieved by its
normalizationwith wy the meanofpa =z Fa T2t f 2¢a

o YO YO
EYD YOO YD YO ——8 (6.2-15)

The final measure gives an estimate of the averaged, quadratically penalized, difference
between two datasetsiormalized by their mean. Similar normalization can be performed
also for the RMSD. The nRMSEBRMSR) allows for a spatial comparison as it is not
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variance which ihas been highlighted as complicating complicate the actual interpretation

of RMSHWillmott & Matsuura, 2005)This may be solved by introducing an independent
estimate of the nRMSHEhat uses the standard deviation to mitigate the error variance as
follows

" YO YO
£ YD "YIo® YD "YO———=8 (6.2-16)
i 0QQU

Furthermore it is also worth considerirthat RMSE, unlike MAE, quadratically penalises
errors and reflects their variance. For these reasons, MAE has been recommended by several
studies as a more suitable measure of average error than RMSE (Willmott & Matsuura, 2005;
Mielke & Berry, 2007). To &p consistency with the existing evaluation studies, it is
recommended to compute and compare both the RMSE as well as the MAE. This could be
extended to involve a quantification of the difference between the MAE and the RMSE,
which may be used as an addial evaluation measure providing information on the
variance of the errors. The smaller the difference between the RMSE and the MAE the better
the potential of the RSME to represent the average error and the less it is affected by the
variance in the ewors.

6.2.2.3 Covariance

Another absolute measure, the covariance, assesses the type and the level of association
between two continuous variablesand y, where xand y, represent the same variabl&he
calculation and use of covariance forms an integrat pathe subsequently outlineérrors

of relative agreement for which a brief outline has been included heressentially,
covariance measurdsow much two random variables change togeth&he covariance for

A I' maxdn, the number of measurements (ormsale size), is defined as

w
€
ot
€
el

6 ¢ ot (6.2:17)

where ajis the mean of alk, wis the mean of a¥;.
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It is an absolute measure in the sense that the values are not standardized, and are
dependent on the chosen scale. When tReand y; vary independently, the separate
parameters @ ® and w @ may be independently positive or negative. This can
potentially result in their mutual cancelation, and therefore a very low covariance value. In
contrast, a high dependency of the dataset would cause correspondence in
positivity/negativity, thus increasing the final covariance value.

6.2.3 Measures of Relative Agreement

In many cases, information pertaining to the nature of the association between two
variables, and not solely the nature of their dissimilarity is required. To extract such
information, we use measures of relative agreement, assessed using tomestatistics.
Relative agreement refers to the potential existence and strength of an association between
two variables. Outlined here are two correlation measures which serve to convey
information about such associationd'he Pearson Produchoment @rrelation Coefficient

(r), used when the variable datasets are parametric in nature, the Spearman Rank
Correlation Coefficienty), for those datasets which are nggarametric in nature.

6.2.3.1 Pearson Produanoment Correlation Coefficient (r)

A dimensionless covariance, tRearson correlation coefficie(t), is retrieved by a division
of the covariance by the two standard deviatistdev (x)andstdev (y)

5 ¢ b o
S ¢ GRS R (6.2-18)
S 0@bo gy 0 F YW

where x andy represents respectively the standard normal random variable for which the
of mand stdev (X)=1 The same applies foy. This can be further expanded by
incorporating the formula for Covariance (6.2.2)1and the definition of standard deviation
for variablesgandy; producing:
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P o o ® 5 (6.2-19)
i 2 h
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where ajis the mean ok and wis the mean ofy.. The achievedvalue can lie between 1 and

-1 which indicate a perfect positive and perfect negative correlation respectively. A perfect
positive correspondence is achieved if the variatiom; is fully explained by the variation in

yi. r effectively provides a measure of how well the two datasets are associated in their
phasing.

To obtain a more meaningful interpretation ofA i A & dza S¥dz G 2(%).02 Y LIzl
Known as thecoefficient of determinationthis represents the pramtion of the total

variation iny; that can be attributed to the linear relationship with corresponding values in

X, and is expressed as

1o . (6.2-20)

W
B w ®

wherel andf represents respectively the maximum likelihood estimate for the intercept
and slope as computed between the paixs ¥). In a perfect correlation (where= +1 or-1)

a variation in one of the variables is exactly matched momesponding variation in the
other. The parameter -#* indicates the extent to which other factors (outsicde& y;) are
influencingx andy;.

If the statistical significance of the correlation is knowmnd r* can quantify its strength.

However, if the significance is unknownor r* are rather poor statistics to gauge this
strength. Furthermore, as both and r? do not factor in the potential effects of x and y
RFEGFasSiQa Ay RAGARdznfcompansaniddd lde dabsi2tgdd To pOEdRNS f |
information addressing these issues, an additional auxiliary test must be performed to
ascertain the significance level ofor r?).

For small number of samples and for cases when data follevetmnal or twodimensional
Gaussian distribution around their means, the following statistic
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(6.2-21)
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(ro=0) withn-2 degrees of freedom and equal to the total number of measurements. Thus,

as a final step, this null hypothesis is tested by comparing the t wdblé tail probabilities

for an appropriate significance level. The measure is widely usetieinahalysis of soil

moisture data (for example, Chen et al., 1997; Gasdl., 2004; Reichlet al, 2004), being

applicable both spatially, and temporally, whilst an excellent overview of the measure and

its variations has been compiled by Rogers & Naseder (1988).

6.2.3.2 Spearman Rank Correlation Coefficiegt (r

When soil moisture data are nemormally distributed, nor is this achievable by
transformation, the nomparametric rank correlation known as Spearman Rank Correlation
Spearman Rank Correlatign) may be used (Vachaud et al., 1984; Geatshl., 2004). This is
also useful when assess the spatial stability of the soil moisture field €€@h2004), and

the temporal stability (MartineFernandez & Ceballos, 2003). The measure uses the ranks of
the x andy; variables in the place of the raw data values, which become the basic data used
in the correlation testrsis calculated using the expression

¢BQ (6.2-22)
g ¢

where n is the nunber of sample units, and is the difference between ranks. Whilsf
provides a good indicator of whether the correlation is strong or weak, it must be checked
against the set of known criticabpearman Rank Correlation Coefficiarstlues. This
ascertainghe likelihood that the value obtained arose by chance in the sampheuaits.

6.3 R-Metrics
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We discuss the-Rletric introduced by Crow and emorkers in several papers (Crow, 2007,
Crow and Zhan, 2007; Craat al., 2010), presenting the motivation fdhis approach, the
data assimilation ideas behind this approach, the limitations of this approach and its input
data needs. We set this approach in the context of other applications of data assimilation to
evaluate observational and model information, asidcuss future perspectives.

6.3.1 Importance of evaluation of soil moisture observational information

Soil moisture is a key variable for understanding the hydrological cycle (Severatathe
2010) and retrievals of this quantity from various obhgeg platforms (e.g. grounbdased and
satellites) provide observational information that helps improve our understanding of soil
moisture, including testing our understanding of the hydrological cycle as embodied in
models. It is thus of interest to prowedobjective quantification of the value of soil moisture
retrievals, in particular provide an objective estimate of: (i) the errors in the soil moisture
retrieval; and (ii) the added value of the observational information compared to that
provided by a modl. Traditional methods for data evaluation are discussed in section 6.3.2.
In section 6.3.%.3.4 we discuss data evaluation methods that use data assimilation
concepts.

6.3.2 Traditional methods for data evaluation

Traditionally, land surface remote rs&ing products from satellites (e.g. soil moisture) have

been evaluated using the direct intercomparison of retrieved quantities with grdaasgd
measurements, presumed to be of higher accuracy than the satellite data (see, e.g., the
discussion in Crow,0D7). A key issue in this intercomparison is taking account of the
different spatiotemporal resolutions of the satellite and growésed data. In particular, a
mapping must be done from the pokstale grounebased observations to the spatial
resolution2 ¥ GKS alGStfAGS AyadNdzySydaed ¢KAa Aa
progress made in these activities, this traditional approach is still generally limited in space
(owing to the extent of the network providing the grouhésed data) and/or tim¢owing to

the length of the field experiment providing the groubdsed data).

A broader view of the quantification of the value of remote sensing retrievals from satellite
instruments requires that consideration be given on how the data will be usedghehR

order applications, in particular, in applications involving the assimilation of retrieval data
into land surface models. For soil moisture products, a fundamental question is the added
value retrievals provide to soil moisture estimates from a modahta assimilation, by
combining observational and model information, adds value to the former by filling in the
observational gaps, and adds value to the latter by constraining it with observations (see,
e.g., Lahoet al, 2010). It is thus natural tose data assimilation concepts to investigate the
added value provided by soil moisture satellite retrievals. We discuss this in section 6.3.3.

6.3.3 Beyond traditional methods of data evaluatianR-metric
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Crow (2007) introduces the-mRetric as a tool toquantify the value of soil moisture
retrievals. The Rnetric is based on the notion that an overestimate of the simulated error in
rainfall would require removal of water and, vigersa, an underestimate of the simulated
error in rainfall would require ddition of water. The water quantity would generally be a
function of soil moisture. Crow (2007) translates this notion into equations that provide
predictions by using the Kalman Filter equations (e.g. Nichols, 2010), with the control
variable (the variale updated in the model) being the antecedent precipitation index (API)
and the assimilated variable being soil moisture (these are the observations input into the
assimilation scheme). The Kalman Filter (KF) equations are:

I|" -
Yn = 311?—11‘;!_1:

f . T
P, = 11,1_1Pﬂ_11{ 1 +Qn-1:

n—

'r?; — 'rf{ + Kﬂ [.rn - H.r?-rj{]:.

f f —
K, =P; HE;[RH +H,P; HE;F] 11

Pﬂ = [I - K;H, ]Pr{ (6.15)

In the Kalman filteequations above, the first equation represents the forecast of the model
fields X' from time-step n-1 to n (updating the previous analysi€), while the second
equation calculates the forecast error covariaiérom the analysis error covariané® and

the model error covarianc®. The third and fifth equations are the analysis steps, using the
Kalman gairk defined by the fourth equationQ and P* are assumed to be uncorrelated (e.qg.
Bouttier and Courtier, 1999). For optimality all errdRs ¢bsewations;P, forecast,Q, model)

must be uncorrelated. In the above equations the observation operbt@nd the model
operator M are assumed linear; the Extended Kalman Filter (EKF) is an extension of the
Kalman Filter where the observation and model @gers are noHdinear (see Nichols, 2010).

The superscripT denotes the transpose of a matrix.

The key relationship in the-Retric formulation is between the API and the soil moisture,

and this is provided by the equation in the Kalman Filter suite th@dates the model
forecast to provide the analysis, the third equation above.

.1":4; — 'rfJ: + Kﬂ [.rn - H.f?-r;{]:.
(6.16)

In this equation, the API (after updating) is representedkhythe API (before updating) is
represented byx; and the soil moisture is represented Py In the Crow formulation the
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observation operator as applied on API (before updating) is calculated as a least squares
regression line (slopé, intercepta) for the observed longerm relationship between API
and soil moisture retrievals (represented by9, and is written:Hx' = a+bX. The difference
between the model forecast’ and the analysig® (¢ ¢ X) is the increment and includes the
difference between the observation assimilated and its model counterpag KiX) ¢ this
difference is calledhte innovation, and plays a key role in data assimilation (Talagrand, 2010).
In the formulation of Crow, the innovation is writteqisG a ¢ bAPI, where APlis the API
before updating (this is< in the Kalman Filter equations above). In the Crow (2007)
formulation 2 is AP1 (API after updating)ln Crow and Zhan (2007), a number of steps are
outlined for optimizing the error in soil moistur®(and the model error@) such that the

time seriesof the innovations are serially uncorrelated and has a second moment equal to 1.

Translating the third equation in the Kalman Filter suite of equations into tmeetRc
formulation of Crow, a rainfall error overestimate is associated with a negativenmgt and

a rainfall error underestimate is associated with a positive increngeim both cases, one
expects a negative correlation between these quantities (rainfall error and the increment).
The rainfall errors are calculated as the difference betweemnrently available global
precipitation products from satellites and higher quality rain gauge products available only in
datarich areas of the globe.

The Rmetric introduced by CrowRjaiue) thus considers the negative correlatid petween

the bias m the rainfall error and the increment, and is defined as the negative of this
correlation,Rque =-R The central hypothesis of therRetric method is that the magnitude

of the negative correlatiorR can be used as a proxy for the overall informatiomteat of
remotely sensed surface soil moisture in global land surface modelling applications.

The Rmetric approach needs the following inputs:

1 Soil moisture retrieval from a satellite;

1 Rainfall data from one or more satelliteshese data are commonlysed to drive a
land surface model for API (see below);

1 Longterm, preferably multiyear, rainfall data from a network of rain gaugethese
data are commonly used as a benchmark to assess rainfall errors;

1 A land surface model, e.g., for APl. For example, one could define a simple
relationship for the API for dayas follows: ARE gAPL; + R, where Ris satellite
based precipitation andis the API loss coefficient (see eq. (1) in Crow, 2007).

In the context of the data evaluation element of the ESBI for soil moisture, the following
datasets could be used with the-rRetric approach to evaluate the satellite soil moisture
datasets involved in the rounbin (ESACCI soil moisture proposal, partZ11):
1 Soil moisture retrievals from ASCAT (2Q@020) and AMSE (various publicly
available datasets; 2062011)c these will be used in the round robin exercise;
f Precipitation datasets from one or more of: (i) GPC® (? latitude-longitude daily
Gldbal Precipitation Climatology Project) data (Huffmanal, 2001) version V2
(available 197%resent; http://www.gewex.org/gpcpdata.htm); (ii) GPCC (Global
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Precipitation Climatology Centre) Full Data Reanalysis Version 5 (time series 1901
2009) (see Rudbland Schneider, 2005; (iii) CMORPH (NOAA CPC Morphing
Technique) data from Dec 2002 to the present
(http://www.cpc.ncep.noaa.gov/products/janowiak/cmorph_description.html; Joyce
et al., 2004). The error in these precipitation datasets would have to himatsd;

this could be done using a more accurate rainfall product, e.g., from global rain gauge
data qualitycontrolled and archived by the GPCC in Germany (http://www
das.uwyo.edutgeerts/cwx/notes/chapl10/rain_gauge.html).

The Rmetric approach is tesd in Crow (2007) using a synthetic twin experiment (see, e.g.,
Reichleet al, 2002, for a discussion of twin experiments in data assimilatioti)is test
establishes that th& e metric is a weldefined function of both the underlying accuracy of
sal moisture retrievals and the quality of rainfall observations used to calculate niaded

soil moisture estimates. As discussed in Crow (2007), this interpretation is not affected by
errors in benchmarking the rainfall information, temporal gaps it swisture retrievals or
errors in model parameters.

In Crow (2007) the Retric approach is tested for real datasets concerning the added value
of various remote sensing soil moisture products for land surface modelling applications.
Results show that @&n retrievals from nofoptimal sensors significantly enhance the quality

of soil moisture predictions derived from a simple water balance model and a spaceborne
LINSOALIAGIGAZ2Y RFEGFaSidd . SOl dzaS 2 @S NJbhasalf | NBS
precipitation datasets provide the only available source of rainfall data, this result offers
strong support for the added utility of spaceborne soil moisture observations for soil
moisture monitoring in regions with poor grousihsed precipitation covage. The results in
Crow (2007) also provide valuable information toward the design of spaceborne soll
moisture retrieval strategies, for example, regarding polarization. To summarize, the results
in Crow (2007) show thaR e provides an effective proxpor the accuracy of soil moisture
retrievals. These results also show that as the accuracy of satedsied global rainfall
products increases, it becomes increasingly difficult to contribute added value to model
predicted soil moisture. Finally, larg& e coefficients can be interpreted as reflecting
higher accuracy in soil moisture retrievals and greater value for land surface modelling
applications. The information provided by tiR, e coefficient can thus be used to optimize
soil moisture retrevals.

The positive results reported in Crow (2007) have two caveats: (i) The results presented on
Rae are based on a very simple API land surface model; (ii)) The approach is intended to
complement, not replace, traditional validation techniques based on using soil moisture
groundbased networks to evaluate remotely sensed (i.e., satellite) soil moisture
observations (see section 6.3.2). Addressing the first caveat by using a physically more
realistic land surface model would allow consideration of a wider range of model errors, and
not simply the impact of precipitation uncertainty. However, increased riomdecomplexity

also brings increased ambiguity regarding the interpretation of the data assimilation results,

32



* < 0il moisture Comprehensie Eror Characterisation Version 0.7
ﬁ Report (CER Date21 May 2012

a need for a more complex data assimilation approach and, ultimately, increased technical
difficulties for adoption of the Rnetric method by uers.

Improvements in the approach described in Crow (2007) have been implemented in two
papers by Crow and Zhan (2007) and Ceiwal. (2010). In Crow and Zhan (2007), the
approach is extended geographically from limited domains over the continental USA to the
entire continental USA, and extended in sensor type by considering microwave
scatterometer and thermal remote sensing, and passnicrowave radiometry. In Croet al.

(2010) the approach of Crow (2007) is applied with two changes: (i) anomalies instead of
absolute values are considered; and (ii) a RahamgStriebel (RTS) filter (Rauehal., 1965)

is applied instead of the Kalmdrilter. This approach is applied on anomalies of precipitation
and soil moisture, and follows the notion that for many land data assimilation applications, a
more important reflection of the value of soil moisture observational information is skill with
regard to detecting soil moisture anomalies relative to the annual cycle. The use of the RTS
filter takes account of the noreaktime nature of theR e methodology (i.e., we are not
interested in shorterm forecasts as in Numerical Weather Predictjcam)d the advantages

of implementing a smoothing technique (as is the case for the RTS filter, but is not for the KF)
in which model predictions are updated by both past and future observations.

As emphasized in Croet al. (2010), theR aue approach isntended to supplement, and not
replace, more traditional soil moisture evaluation activities based on grdaséd soll
moisture networks. As noted in Crow (2007), Raue metric is blind to bias and/or dynamic
range errors and provides only a measofeskill with regard to change detection. While such
change detection is often cited as the key contribution of remotely sensed soil moisture for
many data assimilation activities (see, e.g., Cedval., 2005; Reichlet al., 2008), it is not

the only metic by which soil moisture products should be evaluated. In particular, bias and
root-meansquare error (RMSE) calculations must be made versus gioaset
observations or through the implementation of an alternative technique designed to recover
RMSE imfrmation. Finally, theR e metric is best interpreted as a measure of added skill,
sensitive to both the accuracy of a soil moisture product and the accuracy of a rainfall
estimate driving a moddbased estimate of soil moisture. This fits in with th@ion that
measuring the added value of remotely sensed observations relative to a reference piece of
information is important for assessing the higHevel value associated with an assimilated
soil moisture product.

Recently, Parinussat al. (2011) cossverified Raue €valuation results with those of the
Triple Collocation (TC) verification technique (see, e.g., Detigb, 2010, for its application

to soil moisture observations). Essentialeand TC should contain the same information

if both evaluation procedures are operating correctly (Entekhethbal, 2010). Parinusset

al. (2011) compared both performance metrics on a global scale taking every single
terrestrial climate system into account, and showed tRaj,cand TC are stronglorrelated
(R=0.90). The high mutual consistency between TCRyg: was shown to break down at
extreme vegetation levels such as deserts and rainforest. This breakdown was due to a lack
of variation in theR aue Suggesting thaR que May saturate at extreme conditions. Desert
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areas have only few precipitation events, and for these conditionsRRhge Vverification
technique is likely to require sampling across a large number of such events and may,
therefore, lose sensitivity in vergrid climate regions. For heavily vegetated conditions (e.g.
rainforest), the deviation could be explained by the fact that the soil moisture signal
becomes almost entirely masked due to the overlying canopy. When these two extreme
vegetation regions weranasked the correlation coefficient between the two evaluation
techniques was very highR{=0.95). This high level of consistency between then&ric

(Rauwe and TC techniques lends confidence to their interpretation as robust evaluation
metrics for sdimoisture retrievals.

6.3.4 Beyond traditional methods of data evaluationad 4 NI Yy @ FSNJ 4G Yy RI NRE

One notion in evaluation of observations is that of a coincidence criterion, namely, that
independent observations separated by a predetermimkstance in pace (typically within

the order of 300 km) and time (typically within therder of 3 hours) can be considered
coincident to the observation being evaluated (These coincidence criteria are introduced for
illustration and mainly apply for evaluation of olpgations of atmospheric chemical
species.). This approach implicitly assumes that the observation under evaluation does not
vary significantly (compared to the error being estimated) over the sgatigoral
resolution of the coincidence criteria. A recelhistrative example is provided in the work of
Cortesiet al. (2007) in their evaluation of MIPAS ozone data against HALOE observations for
the period July 2002 March 2004. They use coincidence criteria of 300 km and 3 hours, to
give a total of 141 profile pairs for comparison.

In atmospheric chemistry, data assiation is used to evaluate observations of chemical
species. The application of the methodology allows comparison of two observations taking
account of the spatigemporal differences between them, and the errors of the observation
being evaluated. Datassimilation accomplishes this by providing an analysis (with an
associated error, estimated explicitly or implicitty depending on the data assimilation
algorithm) which allows mapping of the observation being evaluated to the location and
time of the obsevation being used for evaluation. This procedure is commonly termed a
GOGNI YATSN 4G yYRINREOD

Briefly, assimilation of observations & locations (xy;,z,t)) produces an analysis A=A(X,y,z,t).
Observation Qis to be evaluated by comparison against atagion R at location

(% Yk Zotk). This is accomplished by forming the differengdlAwhere the analysed value
A=A Y Zotk) IS interpreted as a mapping of observationt@the spatictemporal location

of R. This mapping can take account (imngiple) of the physics and chemistry governing the
behaviour of observations O and their errors. This can be generalized to a comparison over a
region R and a period of time T by forming an average over R and T of the differeAte (O
(P-A) = OGP, whee O are the observations under evaluation, P the independent observations,
YR ! GKS lylfteara FOGAy3a +ta | adGNIrya¥FSN adl
of ways, including assimilation of observations O. Note that what is calculated over R and
are differences (€2\) and (PA) separately; the overall difference betweenApand (FA) is
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calculated afterward. This gives an estimate for the difference between observations O and P
over R and T, and an estimate of the bias in O (with respect &assemed to have well
characterized errors). Examples of this approach are provided for MIPAS ozone let &eer
(2006) and Errerat al. (2008). Erreraet al. (2008) compare the data assimilation approach

to the coincidence criterion approach of Cortegi al. (2007) ¢ see above, and show it
provides a better estimate of the errors as it takes into account more independent
observations.

The transfer standard approach is now starting to be applied to evaluation of gravity wave
information in observation®f dynamical variables such as temperature (see Lahaa.,,
2011). In principle, it could also be applied to evaluation of land surface observations, e.g.,
soil moisture.

6.3.5 Conclusions

Data assimilation provides the basis for evaluatofiggervations of the Earth System, e.g.,
atmosphere and the land. It is increasingly being used to evaluate satellite observations of
various elements of the Earth System, e.g., chemical species in the atmosphere. A particular
application of data assimilamn for evaluation of observations is thenketric approach of
Crow. It is based on the notion that an overestimate of the simulated error in rainfall would
require removal of water and, vicgersa, an underestimate of the simulated error in rainfall
would require addition of water. The water quantity would generally be a function of soil
moisture. The approach of Crow uses the Kalman Filter equations to translate this notion into
a formalism that can make predictions. Despite the caveats associated witR-mhetric
approach, it is of benefit for evaluation of remotely sensed observations of soil moisture
because: (i) it complements traditional methods of evaluation; and (ii) it provides a basis to
evaluate remotely sensed (i.e., satellite) soil moistureentaations over the globe, regardless

of the density of the soil moisture groudzhsed network (traditionally used to evaluate
satellite retrievals of soil moisture).

6.4 Triple Collocation

6.4.1 Theoretical overview

The validation of soil moisture products is insically limited by the lack of knowledge of

GKS GiONHziKéyY GKS I Oldz f gl £dzS 2F (G(KS LI N}Y

absolute certainty, and spatial as well as temporal mismatch often exert a confounding
influence. The triple collocation technidzS R2S& y 20 NBIjdzANBE GKS
reference data set and permits the estimation of the error variance of each sensor provided
certain assumptions about the error structure are m@wiebaclet al.,2012)(Zwieback,
Scipal et al. 20)2ZwiebackScipal et al. 2012}s popularity has grown considerably over
the last decade. The method was introduced3tpffelen(1998)in order to study the error
characteristics of wind vector data derived from a model, buoy measuremants
scatterometer observations. Further oceanographic studies pertaining to wind speed, wave
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height or sea surface temperature measurements incldadéres and Sterl (20pIanssen et

al. (2007)and (O'Carroll, Eyre et al. 20R8Recent}, the triple collocation technique has
been used in several studies to assess the quality soil moisture estimates from models, in
situ data and remote sensing products (el@origoetal.,2010 Loewand Schlenz201Z;
Miralleset al., 2010 Parinussaet al.,2011; Scipakt al.,2008.

The triple collocation technique assumes that there are three independent sets of
measurements describing the same phenomenon, in our case variations in soil moisture over
a specific location. In addition, we assume soil moesmeasured by senson at timet (g,

is linked to unknown true soil moisturg by an additive bias terth and a multiplicative
bias termi together with a random erroe:

Greas=a+b Q@' +e (6.17)

The aim of the triple collocation technique is to provide an estimate of the varianeelbie
assumptions regarding the statistical characteristics of the error terms are crucial for the
validity of the collocation technique, so we presuppose that:

1. The orrelations between the errors of different sources at the same time step are 0,
I.e. zero crossorrelation,

2. The correlations between errors at different time steps of the same data set are 0,
I.e. zero autocorrelation,

3. The three datasets exhibit a liaerelationship

To meet these conditions, we can ufleree independent data sources describing soil
moisture, e.g. a radiometdrased, a scatterometdbased,a TIR basednd a model or in
situ dataset.The three datasets are linked to the true soil moistin the following way:

g=a+b@+e (6.18)
q,=a,+b,g+e, (6.19)
g =a,+b,@+e (6.20)

In a second step, one of the datasets is defined as the reference dataset. The other datasets
can be transformed into the data spaad the reference dataset using, e.g. a linear
regression method or CBfatching.

q.=Q+e (6.21)
q =qg+e, (6.22)
g, =q+e, (6.23)
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~_4q, 4, »_ 6
=—=-— e = <

q, b, b, 2 b, (6.24)
»_ G a4 +_ 6
=—- — e =2

Q b, b % h, (6.25)

¢CKS FTAGOHAYEZ Ii¥ NI ROy repigsentthe additive and multiplicative bias
between the particular dataset and the reference dataset. The random errors are still the
true errors but also expressed in the data space of the reference dataset. As the
Ydzf G A LJ A O laig kn@v8, ardidverse §ansfarmation back into the data space of the
particular datasets would be possible, but a reasonable comparison of the errors requires
them to stay in the same data space.

Assumed that the assumptions of uncorrelated errors are fulfilted, random error can
then be calculated by crosaultiplying the values and taking the average of an appropriate
number of samples:

&-6 =q-q, (6.26)
e-6 =q-q (6.27)
& -6 =q-q (6.28)
e’ =lla-a Ja-a) (6.29)
e =(la-a Yo - o) (6.30)
&’ =(la-a o - &) (6.31)

In order to meet the statistical requirements, a sufficiently large number of observations is
crucial. Zwiebacket al. (2012 showed that for a relative uncertainty of 10% (i.e. the
standard error relatie to the quantity of interest) 500 samples are needdekller!
Verweisquelle konnte nicht gefunden werderi). Thisis a limiting factor for most earth
observation data where time series are commonly shorter. Therefore, several authors
adopted a pragmatic threshold of 100 observations (Bgrigoetal.,201Q
Scipakt al.,2008).
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Figure6.1. Estimated variance as function of the number of samples N, based on a synthetic dataset. The solid
lines indicate the2 SE range around the actual valZavieback, Scipal et al. 2012

6.4.2 Application and i nterpretation of output

Result of the triple collocation is an estimate of the error variance. Thus, the results do not
provide information on the alidute deviations as expressed by bias and RMSD. It was stated
62@S GKIFG Ay 1 0aSyO0S 2F GKS NBIf aiNHziKe
to which the other datasets are rescaled. Hence, errors of all datasets are expressed in the
dynamicrange of the reference dataset. The choice of the reference dataset affects the
absolute values (and in some cases the unit) of the errors but does not influence the relative
magnitudes of the datasets with respect to each other.

The triple collocation cabe applied either to the original retrieved soil moisture val(eg.
Scipal, Holmes et al. 20p®r to the anomalies from the lonterm predicted values
(seasonalities)(e.g. Dorigo, Scipal et al. 2010While using original values provides
information on the capability of the soil moisture products in representing general temporal
patterns d soil wetting and drying, the anomahased approach gives us more accurate
information on the ability of the different datasets to capture single events of drying and
wetting (e.g. due to rainfall). As a consequence, the anofbabed approach tells ugds
about absolute deviations between datasets, e.g. like induced by a deviating seasonality.

Obviously, it is critical to compare the coarse scale land surface model and remotely sensed
data with point wise irsitu measurements as the obtained errors wailbo contain scaling
errors (Miralles, Crow et al. 2030 Furthermore the three datasetmay show different
temporal sampling intervals. Hencefrers may slightly inflate due temporal collocation
discrepancies. Spatial divergenamsy also occur in a vertical directioss measurements
represent different sampling layers

38

2 )



* < 0il moisture Comprehensie Eror Characterisation Version 0.7
ﬁ Report (CER Date21 May 2012

7 Errors of Active Microwave Retrievals

7.1 Error Propagation

The goal of WARP emrmodelling is to provide with each soil moisture estimate an error or
noise estimate. The WARP error model is based on the propagation of the initial noise
estimate, the so called ESD, along the backscatter measurements through the processing
chain, whit will also give error estimates for all parameters and intermediate products that
are required in order to compute the final soil moisture product. One exception is the
estimate of the noise of the slope and curvature parameters, which is obtained rextrduy
propagation, but by employing a Monte Carlo approach.

In the following, we will use the termesror and noiseinterchangeably. The error is normally
expressed as the error variance of the error distribution; the ESD, however, is reported as
standard deviation.

7.1.1 Interpolation Noise

WARP processing starts with interpolating (also referred to as resampling) theanmteleY

data (such as backscatter, incidence and azimuth angle) from the orbit grid to the WARP
discrete global gridDGG) By replacing L1 attributes of a point by weighted averages of the
corresponding attributes of its neighbours, interpolation will oduce an error that will
depend on the speed at which these attributes change relative to the spacing of the original
measurements in the orbit grid. At the moment, this error is not yet taken into account.

7.1.2 Noise of Backscatter Measurements ESD

This stepnitialises the error propagation in WARP. It estimates the random noise of a single
beam measurement . This is based on the following observation: all three beams observe
the same region at the same time, and the foend aftbeam have the same incidee
angle. Thus, as long as there are no azimuthal effects, the measurements of-taadaft

beam are comparable, i.e., statistically speaking, they are instances of the same distribution.
Hence, the expectation of the difference

#D Og. » Qg < (7.1)

should be 0, and its variance should be twice the variance of one of the beams (assuming,
the measurements are independent):

o+ o+ & (7.2)

By taking the square root and -sranging, this gives us an estimate of the standard
deviation of, , which is calle@stimated standard deviatiofESD) in WARP:

\A |

Fr ve® = (7.3)

wherebyi 01Qis obtained as empirical standard\dation of| over the whole time series.
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7.1.3 Noise of Slope and Curvature

The slope, 0 and curvature, 0 for each day t are among the most important
scattering parameters in WARP. They are required to normalise the beam measurements by
shifting themto a common reference angle of 40 degrees.

Due to the analytical complexity of the interaction of the 3 beams which are combined in
order to estimate the local slopes, and the way the time window length (which determines
which measurements go in the sample for each daily estimate) is handled, e Ni@mlo
approach is currently employed to estimate the noise of the slope and curvature
parameters. That means that the parameters are determined for 50 datasets which are
created from the original one by adding i.i.d. normal noise with standard devi&®D to
each backscatter measurement in the tirgeries. The empirical variance of these 50
parameter estimates for the slope is then used as estimate for the noise variance of the
slopeb @] 0O ; analogously for the noise variance of the curvatiredj 0 .

See theATBD ([RE3]) for a detailed discussion of the slope/curvature estimation process.

7.1.4 Noise of Normalised Backscatter

Backscatter measurements taken at different incidence angles are not directly comparable.
Having retrieved theslope and curvature parameters, we can invert the WARP model in
order to compute from a backscatter measurement of beam i—hd , taken at incidence
angle—and day t, the corresponding backscatter value at the reference angle (40 degrees).

Here i is either the fore mid- or aft-beam. Letting
J

e G Phdu <« <7, (7.4)
we have
a hea Be aPha O «P a «P (7.5)

If we assume that the components efare uncorrelated, the covariance matrix efs
simply

J
1

=, Erfr+e <«fE <« (7.6)

wherebyl is the 3x3 unit matrix.
The Jacobian of f is obtained as

~ ~

e (7.7)

0

Thus, according to seon Fehler! Verweisquelle konnte nicht gefunden werdenthe
variance of the normalised backscatter of thih ibeam is

otx# ha ffpf o8 <P 8 of# <P (7.8)
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Finally, the three beamg now having been shifted to a common reference anglare
averaged:

a ha -C0g., N« Q. m hae Qg h« (79)

The corresponding noise variance is given by

oFf® ha -ofeg , he of6& m ha ofeig, ha (720

7.1.5 Noise of Dry and Wet References

The dry (wet) reference is computed by shifting the normalised backscatter values to the dry
(wet) crossover angle, taking the average of the 2.5 % highest (lowest) measurements at the
respective crossover angle, and shifting the average back to the referangle at 40
degrees (see theATBD ([RE3]) for details). In the following, we will discuss the error
propagation for the dry reference; the wet reference case is handled analogously.

We start be shifting the N normalised backscatter values of the -8erees to the dry
reference angle— . The noise variance of thetlj shifted measurement is computed
analogously to the noise variance of of the normalised backscatter:

0O T 1D VW), 0 LWL o0 — T
™ w o, 0 — T T (7.11)

Note that the subscript (j) does not refer to the beam (the beams have already been
averaged), but to the-th normalised backscatter value. Next, the M = 0.025N highest of
these values are averaged. Since they have different n@sances (depending on the day

and incidence angle of acquisition), there exists no simple general expression for the noise
variance of the average. If we assume that the measurements have been sorted in ascending
order, the variance of the 0.02fil-mean at— is

Ry — B 0O, — (7.12)

Finally, to obtain the dry reference for day t, the mean has to be shifted back to the
reference angle at 40 degrees along the corresponding vegetation curve. This slsft ad
again to the noise variance:

0@} 0 0} VW), 0 — T TR WW, 0 —
T T (7.13)
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7.1.6 Noise of Surface Soil Moisture

The surface soil moisture SSM is defined as degree of saturation relative tastiorically
lowest and highest values at day t

~ I

SSM(t) S , (7.14)

V-- v

reported in percent, whereby the nominator

ver YO RY O '< (7.15)

denotesthe difference between wet and dry reference, the so cafledsitivity

By proceeding along the lines of the derivation of the noise of ttheniormalised beam, we
obtain for the noise variance of the SSM

0 OIYYD

VO] T —

. h N . h

ow i, 0 +0 W} 0 (7.16)

7.2 Known Errors not Captured by Error Propagation

The TWWien change detection model allows correcting/minimizing for certain unwanted
measurement effects (e.g. vegetation, azimuthal anisotropy), as well as modelling the
remaining uncertainty in the final result arising from this. However, there arefisigmni
constraints using scatterometer data for the retrieval of soil moisture, for example, if the
fraction of open water, snow or frozen soil dominates the footprifitese particular cases
among othersare not explicitly covered in the error propagati and as a consequence the
magnitudeof their contribution to the overaluncertainty remains unknown. The following
subsections will discuss the known errors not captured by the error propagation and how to
cope with them with the help of advisory flags.

7.2.1 Frozen ground

The soil dielectric constant strongly decreases at temperatures below 0°C due to the inability
of the soil water molecules to orient according to the external electromagnetic field.
Experiments with dielectric measurements from soils in tB&Hz to 3%GHz band
between-50°C and 23°C for several soil types with distinct volumetric water content (5% and
25%, respectively) showed, for example that silt loam28C hasej to be about 3.3 and 5.5
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for the dry and wet samples(Hallikainen 198% Despite this small difference, it can be
concluded that frozen soil shows similar backscatter characteristics as dry soil at microwave
frequencies. However, in case of vegetation the effect of freezing is morelegmpecause

of the different strategies of plants to avoid freezing.

Although there have been a number of successful approaches in detecting freezing or
freeze/thaw events based on microwave instrume(cDonald and Kimball 20Q6a clear
characterisation of the error made in case of soil moisture retrieval has not yet been
described. Apart from the case where the whole illuminated area is covered by frozen
ground and soil moisture retrieval eaot be performed at all, a fractional based approach
might give a first estimate of the introduced uncertainty. However, to avoid these errors at
the moment in the first place, backscatter measurements most likely effected by frozen
conditions are excludie But due to the imperfection of this process, which is based on
temperature data, there still remain errors. In order to remove soil moisture estimates
governed by frozen soil conditions afterwards, a frozen land surface flag based on a historic
analysisof modelled climate data (ER#0) (Uppala, KAllberg et al. 20p% part of the
advisoryflags. It gives the probability of frozen soil conditions for each day of the year.

7.2.2 Snow

Backscatter measurements from snow are often considered to consist of three parts:
scattering from the top surface, the underlying surface and the volume scatteromg f
within the snow pack. Additionally, also multiple scattering/reflection resulting from
boundaries of the snow layer or from the snow volume are affecting the backscblity,
Moore et al. 1986 Fung 1994 The dielectric properties determine the exact scattering
behaviour, which, in turn, are controlled by the physical parameters of the snow layer (e.g.
layer thickness, layedensity, layer structure, snow grain size and shape, surface roughness,
liquid water content). A snow layer can be classified into dry or wet, according to the
amount of liquid water content. Directly associated with the wetness of the snow is the
penetration depth of the signal. Under dry conditions the ground below the snow is acting as
the major source of the backscatter as a consequence of a high penetration depth. On the
contrary, surface scattering is the dominating part for wet snow, which meaaissirface
roughness is important. As a result, wet snow with a smooth surface for example, might
have a lower signal as a dry bare soil. If, however, the snow surface is rough then the
backscatter is comparable to a wet bare soil. As a result, snow abveggons introduce
errors in the soil moisture estimates due to their specific backscatter characteristics. The
error propagation does not include these circumstances and soil moisture will be calculated
nonetheless. Thus, additional information is neededether snow was present or not. A
snow advisory flag based on a historic analysis of SSM/I snow coveiNdéita 1998, gives

the probability of the occurrence of snow for every day within a year for a certain location. It
enables the possibility to exae soil moisture estimates given a certain probability
threshold of snow cover.
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7.2.3 Surface Waters and Water Bodies

The surface roughness of open water is basically controlling backscatter characteristics in the
microwave region. This is the result of a shpsnetration depth of the signal (<2 mm)

and a huge dielectric contrast between air and water. In case of a smooth surface, specular
reflection leads to very low backscatter, which is typically the case for scatterometers due to
their common viewing gemetries. However, near surface winds are able to rough the water
surface (i.e. generating water waves), which causes an increase of backscatter with a
maximum if the radar looks into the upwind or downwind direction and lowest when it looks
normal to thewind direction. Additionally, also vertically oriented features (like inundated
vegetation or houses) can ensure a strong increase of backscatter due-ttedlesth double
bounce effect. As an exampleehler! Verweisquelle konnte nicht gefunden werdeshows

an ENVISAT ASAR backscatter scene with floods occurred due to heavy rainfall in
Queensland, Australia from January 2011. Inundated regions are highlighted in red, meaning
that almost no signal has been returned, whereas dark blue spots represent higschtiek

from features exposed by double bouncing effects.

All those previously mentioned conditions are steadily changing over time and therefore
nearly impossible to control or model by the -Wden change detection algorithm. This
means, if open water rednes a significant size in the footprint, backscatter measurements
are tainted by the resulting effects and the estimation of surface soil moisture is no longer
reliable. Although known lakes and wetland areas are excluded during the processing, grid
points near areas prone to have temporal standing water)rGgular flooding or near the
coastline are possibly affected and the data needs to be treated with caution.

An inundation and wetland flag derived from the Global Lakes and Wetlands Database
(GLWD)Lehnerand Doll 2003 gives the fraction of water covered by the surface and thus,
can be used as a first indication for susceptible areas.

-25 -17 -15 -14 -13 -11 -10 -9 -8 -

Figure7.1 Flood in Queensland, Australia, January 2011. ENVISAT Advanced Synthetic Aperture (ASAR) Wide
Swath Modg150 m)(Doubkova M. 201
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7.2.4 Dry soil backscatter

The backscatter of a soil surface is primarily governed by the surface roughness and soil
moisture content and, to a lesser extent, by soil type and volume scattering in the soil
medium. It is usually assumed that, because of the penetration depth ineilassmall, the
inhomogeneities within the soil medium cause negligible amounts of volume scattering in
comparison to scattering from the asoil surfacgUlaby, Moore et al. 198§2However, ithe

soil profile dries out completely the contribution from deeper soil layers may not be
inconsiderable any longer. This phenomenon has been particularly observed in very dry
environments, where backscatter increases b¥ dB after the soil dries out atpletely. But

also areas in Mediterranean climate show similar indications. The contribution from deeper
soil layers in very dry climates is assumed to be related to volume scattering, as well as
abrupt changes of the soil type (e.g. rocky bedrock). Howetee precise extent of the
respective impact and their interaction is not known. In case of the Mediterranean climate,
first investigations point out that the sudden change from sandy soils to limestone might be
linked to the increase of backscatter. $hphenomenon is part of ongoing research and
therefore not represented by the error propagation.

7.2.5 Wet correction in arid environments

Although it is very unlikely that a saturated soil condition has not been observed by the
sensor, it carstill be possible This is mainly the case in very dry climates, where soil wetness
does not ever reach to the saturation point. As a result the maximum backscatter does not
correspond to saturated soil conditions and the soil moisture values are overestimated by a
wrong pper limit (seeFehler! Verweisquelle konnte nicht gefunden werdgnin order to
achieve an appropriate sensitivity (difference between minimum andimam backscatter)

in such regions, it is necessary to make use of a«afled wet correction. For the
identification of those areas scatterometer measurements are not enough and therefore an
external climate classification dataset will be us@€bttek, Grieser et al. 2006 The
utilisation of the wet correction is done in two steps. First the lowest level of the wet
reference is set t610dB globally and secondly, after identifying areas with predominantly
dry and hot climate, the wet reference is raised again until thesgiity reaches at least
5dB. However, this is just an approximation of the expected backscatter maximum at
saturated soil conditions and thereby introduces errors which are not covered by the error
propagation. As a result, soil moisture estimates fro@ry dry environments, hardly
reaching soil wetness saturation, require critical examination.
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Saturated Soil
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Figure7.2 Simply due to the fact that saturated soil conditions in very dry climates are very unlikely to occur,
the maximum backscatter does not always eg@nt the wettest soil conditions.

7.2.6 Long-term changes in Land Cover

Land cover and roughness are assumed to be temporal invariant in th&idtJ change
detection model. This assumption is based on the argument that due to thers®
resolution of the scattrometer land cover changes are negligible and therefore seen as
static. However, as soon as the data time series encompasses more than several years
(>5-7), longterm changes of land cover may become increasingly important. Particularly,
urban growth anddeforestation, but also other land cover changes may achieve a certain
extent, which no longer should be disregarded, because it can cause a significant change in
backscatter. Currently these effects are not yet accounted for and also not part of the erro
propagation. Therefore, additional knowledge of the underlying land cover type, as well as
its changes is advantageous and recommended during investigating and analysing the soll
moisture data.

7.2.7 Topographic complexity

A high variability of surfaceonditions in mountainous areas forms topographic complexity.
Such regions have the potential to affect the backscatter signal, meaning that changes of the
signal are not necessarily coupled with soil moisture changes in the first place. These
diverging vaations of the surface include rough terrain, permanent snow and ice cover,
dense vegetation and rock cover. But also calibration errors resulting from the differences
between the real surface and the assumed ellipsoid in the Level 1 processing bekbingy to
category. The soil moisture uncertainty arising under these circumstances are not tied to the
error propagation. Therefore, soil moisture estimates in affected areas need further
investigation regarding their information content or can simply be mdska.

A topographic complexity flag, which is derived from GTOPO30(da8a Geological Survey
1996 and also part of the advisy flags, provides a standard deviation of the elevation
within the footprint, normalized between 0 and 100. It should give a preview on the
underlying topographic conditions.
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7.3 Triple Collocation

(Dorigo, Scipal et al. 20))0applied the triple collocation technique to soil moisture products
from active (ASCAT), passive (AMBRmicrowave observations, and modbesed soll
moidure estimates (ERMterim). Generally, error estimates are lowest in arid regions
(Figure 7.3) such as Southern Africa, mainland Australia, or Central Asia. This is explained by
the very low amounts of precipitation received and hence the very low viitiabf soil
moisture. The global picture would look different if relative instead of absolute errors were
considered, as low errors in dry regions (low overall soil moisture content) have larger
relative impact than in humid regions. In densely vegetadeeas errors are higher, induced
by the increasing attenuation of photons by vegetation elements with increasing vegetation
density. No feasible triple collocation results could be obtained for very dense vegetation
(tropical forests, taiga) and areastlvextreme topography.
o e [m°m]
0.05

0.04

0.03

0.02

0.01

180°W 120°W 60°W 0 60°E 120°E 180°E 0

Figure 7.3: Spatial errors of ASCAT soil moisture estimates obtained with triple collocation. Errors are expressed
in the dynamic range of ER#Aterim (Dorigo et al., 2010).

7.4 Validation against In -Situ Measurements

Soil moisture re&ievals from active (ERS and ASCAT) and passive (e.g. TMIEAMSR
WindSat) microwave observations have been extensively validated against in situ data (e.g.
Wagner et al., 2007; De Jeu et al., 2008; Gruhier et al., 2010; Brocca et al., 2011). In these
validation studies a variety of statistics (e.B. R, SE RMSE Biag were used when
comparing the different soil moisture products. Also, these validation studies were
performed over a range of vegetation types and climate regions, however nekiating

types and regions were covered.

Wagner et al. (2007) performed a validation study in a s&mai region located in the Duero
basin in the central part of Spain. They compared soil moisture retrievals frotSERBand
soil moisture retrievals fronvarious algorithms applied to AM&Robservations to in situ
observations. Gruhier et al. (2009) performed similar analysis for several sites located in
Mali, Niger and Benin, all in the Sahel region. A limitation in these studies is that global soll
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moigdure datasets were evaluated based on data from only one test site, representing a
particular kind of soil and land cover. To overcome this limitation, Brocca et al. (2011)
presented an inteicomparison and validation study of soil moisture estimationsnfrine
ASCAT and AM$Rsensors across Europe. They used test sites from several ground based
networks located throughout this continent, each having its unique soil texture, land use,
rainfall and temperature regime. Two different scaling strategies, dase linear regression

and Cumulative Distribution Function (CDF) matching, were employed to remove systematic
differences between satellite and sipecific soil moisture data. Table 7.X gives a summary
of the results of the comparison between s#pecfic and satellite soil moisture for the
ASCAT soil moisture product with the application of the CDF matching approach.

Country Site  Observation depth Correlation coefficient

(cm) R

Luxembourg BIB 5 0.64
Spain K10 5 0.69
Spain F11 5 0.65
Spain 106 5 0.66
France URG 5 0.79
France LzC 5 0.81
France PRG 5 0.72
Italy VAL 10 0.71
Italy CAP 10 0.75
Italy BAG 30 0.75
Italy MEL 30 0.65
Italy TOR 30 0.74
Italy CHI 30 0.71
Spain VCE 20 0.44
France VOB 30 0.55

Table7.1: Summary of the results ¢iie comparison between satellite soil moisture from (ASCAT) and in situ
observed data (Brocca et al., 2011).

8 Errors of Passive Microwave Retrievals

8.1 Error Propagation

The dynamic errors of the passive microwave retrievals are calculated using error
propagation. The error model is based on the propagation of the initial noise estimates
through the processing chain. Due to the simplicity of the radiative transfer model it was
possible to compute the Jacobian by using an analytical solution (Parinesa2€11).
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As given in the CClI ABTD docum¥itthe observed brightness temperatures could be
described as

Topy =Ts& G+ (L- MT(1- G +

8.1
(1' er(P))(l' W)Tc (1' G)G ( )

WhereT, refers to the observed brightness temperatures, P refers to either horizontal (H)
or vertical (V) polarization,,and 7. are the thermometric temperatures of the soil and the
canopy respectivelyg NETFSNE (2 GKS NRdzZZK &adz2NFIF OS SyYAaa
f0SR2X YR (GKS GNI}yavYAaairgaileryamgodingio RSTAYS

a-t o
G= (8.2)
“P&os0)?
Based on these equations the radiative transfer equation8(1) was rewritten and an
analytical solution of the quantitative uncertainty for passive microwave remote sensing of
soil moisture product was derived.

The basis of the analytical solution to calculate the error in the soitore productiles in
the use of theerror propagation methodology8(3) presented in most statistical textbooks;
for example the functionk= f (u,v,...).

o ~2 P ~2 o ~o ~
s2 @28 +s28%8 + +or 5.5, BEEX 0+ (8.3)
GHU = CHV+ GHU -V +

The methodology is adapted here to determine the variap¢®f the dielectric constant

(k), using the variances of several input parameters. After the determination of the variance
in the dielectric constant, a dielectric mixing mo@&lang and Schmugge 1980as used to
calculate the uncertainty in soil moisture. The challenge in using the basic error propagation
methodology 8.3) is to define the partial derivatives.

To define the partial derivatives, we used the jacobian m#s®e The jacobian matrix &
matrix containing the first order partial derivatives of the radiative transfer equation with
respect to each variable. In our case the jacobian matriaggiven in Equation §.8an be
described asg4)

o
I

a; gTbH oy Moy HTy B
xHG K UTLS pw Hh
aul,, Wl Ml Ml My

J= 2 HG bk pT,s  ww  ph
20 0 1 0 0

0

1

(8.4)

&0 0 0 1
%0 0 0 0

-QD: O: O: O: O: O: O: OO
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After applyingthe land surface temperature assumption, one is able to rewrite the
radiative transfer equation§(1) after puttingT, ; outside bracketsd5), for convenience we
RNRL) 8dz0 aONR LI Wt Q F2NJ LREFNART I GA2Y D

T, =T [eG+@1- WA- O +(@1- &)1- W(1- OF (8.5)
This can be rewritten to8(6)
T, =T.ole (G- (- W(1- 99 +(@1- (- &) (8.6)

For convenience we define the expressiang ) (8.7) andG(Gw) (8.8) to rewrite
equation 8.6), resulting in 8.9)

F(GW) =G- (1- W)(l- GG 8.7)
G(GwW) =(1- W(d- G) (8.8)
T, =T,<[F(G We (k, h) + G(G W] (8.9)

The rough surface emissivigy,, follows from @.10), wherein the horizontal (H) and

vertical (V) polarization are reintroduced@his equation was written to calculate the rough
surface emissivity in horizontal polarization. To calculate the rough surface emissivity at
vertical polarization the(H) and (V) sign for polarization should be swapped. Q is the
roughness parameter knowas the cross polarization, h is the roughness and k refers to the
dielectric constant.

& (k) =1- |Q- ey, (K) + (L~ Q- ey (K))]c(h) (8.10)

wherein the last term refers td8(11)

c(h) =exp(- h@os(1)) (8.11)

The smooth surface emissivity was calculated ustitP and(8.13), for convenience we
RNRL)] 4dz0 AaONRALII waQ FTNRY aY224K SYiraairgiieo

1. &cos@)- DG (8.12)
ccos() +Dx

H
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& =1 %g ("Eos(.l)+D§

wherein the D term refers to 8.14)

D=vk- sin*u (8.14)

The following derivatives wile needed

W _1 - wa- 20 (8.15)
G
K5 - 2a- we (8.16)
MG
He, _ 2cos() cos()- D (8.17)
pk D (cos()+D)?
e, _ ak 9 k@os()- D 8.18

From these derivation it follows that the jacobian matr&4{) can be calculated
analytically

G
Ji :TLszuGer,H +%§ (8'19)
_1 & KGa 8.20
I TLS?L%Q’V + uGg ( )
_ & 1e, pe, @
J,=T . FE®™ +(1- Q="0c (8.21)
TP (- QLS
J22 =TLSFZ@L:T; +(1- Q)L:j:gc (8.22)
J;=Fe , +G (8-23)
Jy=Fe, +G (8:24)
J14 :Tle(l' G)Ger,H -1+ GZJ (8-25)
‘]24 :Tle_(l' G)Ger,v -1+ GZJ (8-26)
N :TLsF[Q(l' g )+(@- Q@1- e, )]CCOS(J) (8-27)
3,5 =TsFIQU- &) +(1- Q@- &)]ccos() (8.28)
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From LPRM, it follows that variations in the observed parameferg, T g2 es@Nd

hare related to variations in the unknown model parametgigT, .S - h.ICghibining
this with the inverse jacobian matrix results in the following express8&9j

a G g ad, &
® (0] e (0]
akK 0 e dl,y, 0 (8.29)
?I-LS g: J -lzﬂ—LS(obs) 8 )
sed Wb ®ediy 0
Sh?  To, O
The second line in this equation holds the res8I8Q)
513 =((J -1)21)251ng + ((J_l)zz)stzbv +
23,0027 S oS ov (8.30)

+((37),9)°s Es(obs) (3250 +((37)20)°s0

Herein, the correlation between the errors m, andT,, is expressed in r.

Error propagation and/or sensitivity analyses illustrate the error or sensitivity of the
retrieved values relative to the uncertainty of the input parameters. Some input parameters,
like brightness temperature observations have widfined values for theiaccuracy, while

for others one can only provide an estimate.

AMSRE sensor sensitivity is a well known value. Fdra@d brightness temperature
observations it is 0.3 K and for the other relevant for soil moisture retrieval frequency bands
(% and Kuband) it is 0.6 K(NSIDC 2006 Theland surface temperature algorithm was
extensively validatedParinussa, de Jeu et al. 2008olmes, De Jeu et al. 200Recent
reanalysis of this algorithm resulted in uncertainty values ingrypetween 2.5 K for noeno
low-vegetated areas to 1.8 K for higlegetated areas for AMSR night time observations
only. These values include the AMBERensor sensitivity of 0.6 K.

Other input parameters do not have well defined values for their aacyibecause it is
often difficult to derive a reliable estimate. Limitations on measuring techniques, high spatial
and temporal variability, and problems due to-spaling of parameters may all contribute to
this uncertainty.

In LPRM fixed values of thengle scattering albedo and roughness parameters (i.e. h and Q)
are used. Recent studies demonstrate an improvement of understanding of the dynamic
nature of these parameteréSchneeberger, C. Stamm et al. 20@igneron, Y. Kerr et al.
2007). Howewer the impact and implementation of these findings at satellite scale is still
under development.
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LPRM uses the porosity and wilting point maps from GLDAS. The uncertainty of these soill
properties at a global scale are, mostly due to upscaling proce$ses, large degree
unknown.

8.2 Known Errors not Captured by Error Propagation

The dynamic errors of the passive microwave retrievals are calculated using a standard error
propagation approach as described previously. This error model is based esttimation

of the uncertainty of all input parameters and propagated these uncertainties to the soil
moisture output. This approach allows the estimation of uncertainty in both time and space,
and could be used for masking purposes. However the standaod propagation approach
filters many soil moisture retrievals of low quality, there are still significant constraints such
as frozen soil, radio frequency interference and active precipitation events. These particular
cases, among others, are not explicitovered in the standard error propagation approach
and as a consequence additional masking routines need to be applied. The following
subsection will discuss the known errors not captured by the error propagation and how to
cope with them with the helpf advisory flags.

The LPRM allows for simultaneous observations of the thermodynamic temperature (Holmes
et al., 2009), areas with snow cover or frozen surface conditions can be detected and flagged
accordingly using this method. In areas with excessiegetation, the soil emission is
completely attenuated by the canopy and this tends to saturate the microwave signal with
increasing optical depth. As a result the sensor sensitivity to variations in soil moisture
decreases. When the vegetation density tso high, LPRM will either not achieve
convergence or these pixels can be assigned an appropriate data flag based on
simultaneously retrieved vegetation optical depth. The natural microwave emission may be
interfered by mammade radio signals, so called dka Frequency Interference (RFI).
Continuously LPRM is testing for RFI by calculating the RFI index as defined by (Li et al. 2004).
In the event of extreme RFI, LPRM will assign an appropriate data flag to these pixels. Finally,
natural microwave emissionf the soil may be disturbed by active precipitation events.
Using the multfrequency nature of the AMSR sensor, such events can be screened and
filtered. Several algorithms for the detection of active precipitation exist and a detailed
overview of thes methods was given by Seto et al. (2008).

8.3 Triple Collocation

As shown previously (section 7.8Rorigo, Scipal et al. 201@pplied the triple collocation
technique to soil moisture products from active microwave observations (ASCAT), passive
microwave (AMSIE), and modebased soil moisture estimates (ER®erim). The general
global patterns, which were linked to variousntate regions, remain similar for the ASCAT
and AMSBRE error estimates (Figure §.1
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Figure8.1: Spatial errors of AMSIR Gband soil moisture estimates obtained with triple collocation. Errors are
expressed in the dynamic range of GLID&Sh (Dorigo edl., 2010).

Despite the similar average errors of both datasets, several differences in the spatial
distribution of the errors can be observed between the datasets (Fig8718 In very dry
areas (e.g. Sahara, central Australia) error estimates derfeedAMSRE Gband are
remarkably lower than error estimates derived for ASCAT. In these regions the-AMSR
observations are hardly disturbed by vegetation which explains the low error estimates. The
relatively high errors obtained for scatterometer data tilese areas are a wethown
phenomenon believed to be related to volume scattering effects in dry, loose sand and the
systematic orientation of sand ripples and dunes over large areas leading to systematic
influence of the azimuth viewing direction (Balit et al., 2006).

On the other hand, soil moisture derived from AMBHRs prone to larger random errors in
moderately to densely vegetated areas, like for instance found in seaslern North
America and northern Argentina. Vegetation affects passiveraniave observations from
above the canopy in two ways. First, vegetation will absorb or scatter the radiation
emanating from the soil. Secondly, also the vegetation canopy itself emits radiation. These
two effects tend to counteract each other. The obsdrle soil emission will decrease with
increased vegetation, while the emission from the vegetation canopy will increase. Under a
sufficiently dense canopy, the emitted soil radiation will become totally masked, and the
observed emissivity will be due latgeto the vegetation (Owe et al.,, 2001). As similar
vegetation interaction is expected for active microwave signals (Ulaby et al., 1982), it is
suggested that the differences in errors over vegetation should be mainly attributed to the
retrieval method. Reently, Crow et al. (2010b) pointed out that first order radiative transfer
models are not able to accurately describe radiation attenuation in denser vegetation,
especially for larger incidence angles. This finding would explain the shortcomings of LPRM,
which is based on a simple linear radiative transfer model, in describing the higher order
scattering that is very likely to occur in canopies with heavier vegetation cover. Hence, larger
uncertainties in retrieved soil moisture would occur in these aréasontrast, vegetation
correction in the TU Wien algorithm is dadaiven and therefore implicitly accounts for
higher order scattering effects. And even though uncertainties in observed soil moisture
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increase with increasing vegetation density, effeate not as pronounced as for LPRM.
However, more research and model comparison is needed to verify this hypothesis.

Figure8.2 shows the areas for which either ASCAT (blue) or AEI§Rd) gives the lowest
triple collocation errors. Such a map can be ubé&bn ranking the different products in an
attempt to merge the datasets (Liu et al., 2010). Nevertheless, the resulting Boolean map
should be taken with precaution as, especially in transition areas, errors may be very similar
and none of the products sluitd be excluded on beforehand. In areas where less than 100
triplets are available (left blank in the image) it is expected that ASCAT would provide lower
errors in moderately to densely vegetated areas while ANESKould show lower errors in

dry areas. Tése assumptions could be used to fill the map in Figuzen8order to obtain a
complete global coverage.

Figure®Y ¢KS I NBF Q& Ay 6 KA OK (r&d) shdS thé smdllést etror valid (Dpfign etRINI ! a { w
2010). White areas indicate pkas where less than 100 common observations are available.

8.4 Validation against In -Situ Measurements

As shown previously (section 7.4), soil moisture retrievals from active and passive
microwave observations have been extensively validated against in dau€lg. Wagner et

al., 2007; De Jeu et al., 2008; Gruhier et al., 2010; Brocca et al., 2011). A brief selection of the
results from soil moisture retrievals from active microwave observations obtained by Brocca
et al. (2011) were shown, these results weteosen because they evaluated the quality of
remotely sensed soil moisture over a range of vegetation types and climate regions
throughout Europe.

In contrast with soil moisture retrievals from the ASCAT sensor, Brocca et al. (2011) used
several (fundametally different) retrieval algorithms to retrieve soil moisture from the
passive microwave observations obtained by ANESR'he simplest algorithm used in this
research was the Polarization Ratio Index (ANESRRI), which uses the vertical and

55



* < 0il moisture Comprehensie Eror Characterisation Version 0.7
ﬁ Report (CER Date21 May 2012

horizontal plarization measurements, and is frequently used to describe soil moisture
variations because at low frequency (<10 GHz) the main part of the microwave emission
signal comes from soil moisture and soil temperature and the PRI allows filtering the effect
of soil temperature. The second algorithm (Njoku & Chan 2006) is currently used for the
official AMSRE NASA soil moisture product and uses normalized polarization ratios of the
AMSRE. Vegetation and roughness are accounted for using the polarization et 65

and 18.7 GHz in empirical relationships. This AIASRASA product is currently available
through the archive of the National Snow and Ice data Center (NSIDC). The last algorithm
used in their study was the three parameter retrieval model callee Land Parameter
Retrieval Model (Owe et al., 2008; LPRM). The LPRM retrieves soil moisture, vegetation
optical depth and soil/canopy temperature simultaneously from passive microwave data
based on the optimization of a microwave raftive transfer model.Table 8.2gives a
summary of the results of the comparison between several soil moisture algorithms applied
to AMSRE passive microwave observations and in situ data with the application of the CDF
matching approach.

Country Site Observation depth AMSRE LPRM AMSRE NASA AMSRE PRI
(cm) R R R
Luxembourg BIB 5 0.78 0.64 0.71
Spain K10 5 0.69 0.55 0.68
Spain F11 5 0.71 0.43 0.67
Spain 106 5 0.66 0.50 0.70
France URG 5 0.53 0.41 0.68
France LZC 5 0.54 0.21 0.54
France PRG 5 0.46 0.30 0.62
Italy VAL 10 0.76 0.61 0.53
Italy CAP 10 0.78 -0.13 0.63
Italy BAG 30 0.81 -0.01 0.28
Italy MEL 30 0.71 0.04 0.15
Italy TOR 30 0.72 0.24 0.35
Italy CHI 30 0.72 0.22 0.36
Spain VCE 20 0.45 -0.03 0.52
France VOB 30 0.61 -0.01 0.50

Teble 8.2 Summanyof the results of the comparison between several soil moisture algorithms applied to AMSR
E passive microwave observations and in situ observed data (Brocca et al., 2011).
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9 Errors from Merging

The ECV production system consists of thsgeps: 1) merging hie original passive
microwave products into a single product 2) merging the original active microwave products
into a single product, and 3) blending the two merged products into one final datastte

one hand, errors and uncertainties of the origiredtive and passive microwave input
products need to be adequately propagated through the production system, at the other
hand new uncertainties and errors arise from the ECV production system itself. This chapter
aims atidentifyingthese two types of errs, althoughresearch is still needed to accurately
quantify them.

For ECV productiomput data from various satellite sensors with different specifications are
used. The ones included in the current product version are summarizethaloe 9.1.
Differences in microwave frequency, spatial resolution, overpass times and retrieval
methods allpotentially add uncertainties to the ECV.

Passive microwaveroducts Active microwave products Model
product
SMMR SSM/I ™I AMSRE SCAT ASCAT GLNI(D);?'-
Platform Nimbus 7 DMSP TRMM Aqua ERS MetOp ---
Time period Jan 197% Sep 198% Jan 199& Jul 200%; Jul 1991 Jan 200% Jan 200@
used Aug 1987 Dec 2007 Dec 2008 Dec 2008 Dec 2006 Dec 2008 Dec 2008
Channel used
for soil 6.6 GHz 19.3 GHz 10.7 GHz 6.910.7 GHz 5.3 GHz 5.3 GHz -
moisture
Original spatial
resolution* 150x150 69 x 43 59 x 36 76 x 44 50 x 50 25x25 25 x 25
(km?)
Spatial Global Global N4C to S40 Global Global Global Global
coverage
) 780/897
Swa(ﬁ‘m";"dth 780 1400 after boost in 1445 500 1100 (550%2) -
Aug 2001
Equatorial Descending:| Descending: Van;zr(_non Descending: Descending: Descending: 8 times/day
crossing time 0:00 06:30 POt 01:30 10:30 09:30 (0:00
orbiting)
. 3 3 3 3 3 3 3 3 Degree of Degree of 2
Unit mm mm mm mm saturation 09 saturation 09 kgm

*For passive and active microwave instruments, this stands for the footprint spatial resolution.

Table9.1 Major characteristics of passive and active microwave instruments and model product.

9.1

Interpolation Errors

9.1.1 Temporal interpolation

Table9.2 and Table9.3 summarize the temporal resolution and observation tew# the

input daasets. Given the heterogeneous observation timeswds decided to set the
reference time for theEC\Wata set at 0:00 UTC. For each day, the observations within the
reference time of 0:00 UTC +12 hours are considered. If more than one observation falls
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within this period, the observation closest in time is select€dis strategy results in data
gaps when no observations within £12 hours from the reference time are available. For the
modelled soil moisture datasets no resampling is required.

The observiaon selected for a specific dataset for a specific day is mitigated to the ECV
production system without any temporal interpolation or resampling. Therefore, systems

that make their observations close to the 0:00 UTC reference time are expected to be
slightly more representative for the conditions at the reference time than the ones that are

taken with a larger time laghe user of the merged product should be awardhos.

The AMSHE soil moisture estimates based on niglithe (descending modeobservaions

are in most situationamore reliable than those obined during the dayascending mode).

This is mainly caused by the complexity to derive accurate estimates of the effective surface
temperature during the day. For this reason only nighte soil masture observations from
radiometers are used for theurrent version of the EQ¥Moduct.

Sensor SMMR SSM/I T™I AMSRE

Temp. ~1-2 per week (depending ~1 per day (depending ol ~1-2 per day (dependin ~1-2 per day

Res.: on latitude) latitude) on latitude) (depending on latitude)

Obs. Solar Obs. Time 12:00 Variable variable Solar Obs. Time: 13:3(

Time: (asc) 24:00 (desc) platform dep. (asc) / 01:30 (desc) fo
Aqua

Table9.2 Temporal specifications of passive microwave sensors

Sensor ERSL/2 data ASCAT GLDAS
Temp. ~ 1-2 per week (depending on ~ 45 per week (depending on 8 per day
Res.: latitude) latitude)

Obs. Time:| Solar Obs. Time 10:30 (asc) / 22:] Solar Obgime 9:30 (asc) 21:3( 0:00, 3:00, 6:00, 9:00, 12:00,
(desc) (desc) 15:00, 18:00, 21:00 UTC

Table9.3 Temporal specifications of active microwave sensors and modelled products

9.1.2 Spatial interpolation

The final merged product is provided on a regular grid with a spatial resolution of 0.25
degree. Table 9.4 and Table 9.5 show the spatial specifications of passive, active, and
modelled productsNearest neighbour resampling is performed to convert the various grid
projections onto the common regula grid. Nearest neighbour search is based tre
reference (reguldr grid Foreachregulargrid pointa nearest grid pointvithin the input
dataset is sought Thiscanlead to multiple assignments when different grid points in the
reference data set arelase to the same grid point of the input data. This most likely
occur in the pole regions, where tteampling distance of the regular gistronglyreduces
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This resampling effect emerges especially when resamiiedcRS 1/2 and ASCkTel 2
soil mosture products as these input data use an equidistant grid (DGG).

The uncertainties resulting frospatialresampling arenainlyrelated tothe distance of the
original projection andthe spatial resolution of the input dataset.

Sensor SMMR SSM/I T™I ASMRE
Original spatial
resolutior (kn) 150x150 69 x 43 59 x 36 76 x 44
Spatial Coverage Global Global N3& to S38 Global
Projection / Orbitfiles Orbit files Orbit files Orbit files
Resolution samplingdistance | sampling distance| sampling distance| sampling ditance
25 km 25 km 13.9 km (x dir) 10 km

and 9.1 km (y dir)

Table9.4 Spatial specification of passive microwave products

Sensor ERS1/2 data ASCAT GLDAS
Original spatial resolution
(km?) 150x150 69 x 43 76 x 44
Spatial Coverage Global Global Global
Projection / Resolution WARP DGG / WARP DGG / Regular Grid /
12.5km 12.5km 0.25°

Table9.5 Spatial specification of active microwave products

9.2 Scaling

Due to different observation frequencies, observation principles, and retrieval techniques,
the contributing soil moisture datasets are available in different observation spaces.
Therefore, before merging can take place at either level, the détaseed to be rescaled
into a common climatology. Thegcaling procedure is applied to the daily soil moisture
values at three levels in the processing chain:

1) Rescaling of all the passive microwave soil moisture observations to the climatology
of AMSRE.

2) Rescaling of all the active microwave soil moisture observations to the climatology of
ASCAT

3) Rescaling of the merged active and passive microwave datasets to @GNDAIS

Scaling is performed using cumulative distribution function (CDF) matching whichkei$ a
establishedmethod for calibrating datasets with deviating climatolog{Bzichle, Koster et
al. 2004 Drusch, Wod et al. 2005Liu, de Jeu et al. 200iu, Parinussa et al. 201 5caling
is performed both to the soil moisture retrievals and their associated errors:n@Gidéhing is
applied for each grid cell individually and based on pists® linear matchingln general,
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scaling between two datasetdepends on the period and soil moisture conditions covered
by the two datasetyZwieback, Dorigo et al. 20L2n addition the nature of correlation
between two datasets is an important factor controlling the accurateness of scaling.

9.2.1 Scaling of passive microwave product s

The AMSHE soil moisture retrievals are expected to be more accurate than the other
passive products due to the relatively low microwave frequency and high temporal and
spatial resolution of the sensor (Liu et al., 2012). Therefore, for soil moisturevaisifrom
AMSRE are selected as the referentmewhich retrievals from other passive instruments are
rescaled and merged

In the ATBD ([RE3]) it was shown that the TMI product shows a strong linear relationship
with the with the AMSHE product, both fo original retrieved values and the anomalies from
the longterm seasonality. This indicates that both the annual cycle and single events (e.g.,
rainfall events and inteannual variations) are captured similarly well by both datasets.
Thus, rescalingf TMI to AMSHE only introduces small uncertainties.

SSM/I soil moisture estimates are less accurate than AEISBecifically over vegetated
areas(Parinussa, Meesters et al. 2011n the ATBD ([R8]) it was shown that that the
relationship between SSM/I and AME&RSsoil moisture retrievals tends to depart from
linearity and that the seasonal cycles captured by SSM/I does not correspond to
precipitation patterns. However, SSM/I shows a similar responsitgle events as AMIR
Hence, it was decided to compute for SSM/I the anomalies from thetknmg seasonality,
scale these anomalies to the dynamic range of the AldSiRomalies, and, finally, add them

to the seasonality of AMSR. This introduces an oertainty to theseasonal cycle

The SMMR platform, i.e., Nimbids had a very short overlapping period with the SSM/I
sensor, and no overlap with the other two sensors. The lack of coincidence between sensors
prevents to scale SMMR observations direadh AMSRE, thus allowing only a comparison of
seasonality. In theATBD ([RE3]) it was shown that seasonalities of SMMR and AMEISR
agree well and deviaterdy over some very dry regions. Following the assumption that
seasonalities are similar SMMR observations (Jan 1979 to August 1987) were scaled to the
merged AMSHE/TMI/SSM/I dataseby matching their respectiv€DF curves. It should be
noted that this mehod assumes that the CDFs remain static over time, i.e. there has been
no change between thevo time periods.

9.2.2 Scaling of active microwave products

For active instruments, ASCAT soil moisture retrievals are selected as the refdileadeRS
SCAT and ABT soil moisture variations are calibrated between the lowest (0%) and highest
(100%) values over their individual operational period, which requires further adjustment to
combine them. The limited overlap in time (i.e., a few months) and space (i.e.Eordpe,
Northern America and Northern Africa) rules out the global adjustment method based on
the information of their overlapping period. That is, the method applied between TMI and
AMSRE cannot be applied between SCAT and ASCAT. Hence, it was ashaméte t
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dynamic ranges of SCAT and ASCAT are identical and the CDF curves of both datasets are
used for each grid cell to rescale SCAT to ASCAT. By doing this a potential uncertainty is
introduced by the fact that extreme events (i.e. a completely dryatursted soil) may not

have been observed within one of tlidservationperiods.

9.2.3 Scaling of active+passive ECV

Due to different observation frequencies, observation principles, and retrieval techniques,
contributing soil moisture datasets are availablaifferent observation spaces and need to

be rescaled to a common reference to be able to merge them. As neither of the product
groups provides a global coverage we currently use the GINoAB surface soil moisture
product as a reference. As a consequersz@l moisture of theCClproduct is provided in the
climatology of GLDASoah. This not only affects absolute values of the estimates but may
also affect trends and extremes present in the original satefiieed soil moisture products.

To investigate He influences of rescaling against GLEA®ah, (Liu, Dorigo et al. 2032
compared the long term changes in annual averages of the merged microwave products
before and after rescaling against GLEASoah. Thdong term changes were derived using

the nonparametric MangKendall trend test. As the rescaling process (against GLDAS
Noah) changed the range of values of soil moisture product and consequently the absolute
values of trends, the microwave productse(j.products before and after rescaling against
GLDAS4-Noah) were first normalized before performing the long term trend analyidie.
rescaling process slightly changed the magnitudes of trends, but not the directions of trends
(i.e., decrease/increasdlrigure 9.). Approximately 92% of grid cells with significant trends
(pb0.05) in the merged products retain significant trends after the rescaling against GLDAS
1-Noah. The remaining 8% of grid cells are sparsely distributed over all continents, rather
than concentrated on any specific region, minimizing the influences of data manipulation on
the relative dynamics in the original datasets. As such, the final blended product is still a
satellite derived soil moisture product, as it carries the relative dyioa of the original
passive and active microwave retrievals.

61



* < 0il moisture Comprehensie Eror Characterisation Version 0.7
ﬁ cci Report (CER Date21 May 2012

04

0.2

Changes in normalized PM’
Changes in normalized AM’
=

YRy 0 02 04 04 02 0 02 0.4
Changes in normalized PM Changes in normalized AM

Figure9.1 (a) Relationships between-éxis) annual changes in normalized merged passii@owave (PM)
product (change per year) and-#xis) annual changes in the normalized one after rescaling ag@inSAdg -
Noah (PM*) (change per year). (b) Saase(a), but for active microwave product.

To examine the influences of model choice on tmalfiblended product(Liu, Dorigo et al.
2012 compared the correlation coefficients and biases between Noah model and the other
GLDA4 models (i.e., Mosaic, CLM and VIC). The soil moisture outputs from fiase
models are highly correlated, which suggests that relative dynamics of soil moisture derived
from different GLDAS models are quite similaF{gure 9.2 left column). When it comes

to the absolute values, the biases between different models varyiderably (right column

of Figure 9.2 Absolute values from Noah are much higher than Mosaic and slightly higher
than CLM outputs over most of the world, except for the boreal regions, whereas Noah soll
moisture estimates are generally lower than the VIGdel. The soil moisture outputs from
CLM, Mosaic, VIC and Noah represent the top 1.8, 2, 10 and 10 cm soil layers, respectively.
The microwave observations normally measure the wetness conditions for the¢@

depth which is more comparable with theg soil layer of CLM and Mosaic. However the
CLM and Mosaic model outputs are only available at the 1° spatial resolution. The absolute

values of the final blended product (through GLEASoah) may underestimate soil
moisture values over most of the world
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Noah and Mosaic, CLM and VIC, respectively, duringc2008. It isnoted that the depth of soil layers
represents 10, 2, 1.8, and 10 cm for Noktosaic, CLM and VIC, respectively. The soil moisture values for the
time periods with belowero surface temperature and snow cover were masked out before conducting
comparisons (From Liu et al., 2012).

9.3 Merging

9.3.1 Merging of passive microwave datasets into passive ECV

For the current merged passive product only descending overpasses, corresponding 1o night
time / early morning observations, were considered. This is because near surface land
surface temperature gradients are regarded to be reduced at nigidihg) to more robust
retrievals(Owe, de Jeu et al. 20D&8However, recent studie®rocca, Hasenauer et al. 2011
suggest that for specific land cover types dimye observations may provide more robust
retrievals than nightime observations, although the exact causes are still unknown. The
accuracy of the two modes needs to be studied in more detail. The accufdhg onode

itself should be regarded in combination with the time lag between the mode and the
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