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1 Executive Summary  

This Comprehensive Error Characterisation Report (CECR) gives an overview of all known 
errors of the soil moisture datasets as generated by the CCI soil moisture project.  This 
report defines the different error characterisation proxies and describes the errors of the 
Essential Climate Variable (ECV) soil moisture datasets.  Errors related to sensor sensitivity, 
scaling and algorithm assumptions are described in detail.  

Over the years global soil moisture data from satellite observations have been validated with 
in situ observations. This is a challenging task because there is a strong difference in spatial 
support. On general two techniques are used to describe the soil moisture skill. One is on 
the absolute differences (i.e. Root Mean Square Error, mean average error, mean bias) and 
the other on the relative agreement (i.e. correlation coefficients and covariance). The 
absolute measures assess the effect of random and the systematic error and the relative 
measures check on the association of the phasing of the separate datasets.  

Other techniques to assess the soil moisture error from coarse-resolution soil moisture 
products are error propagation, triple collocation, and R-metrics.  An error propagation 
analysis is a standard error technique and uses the errors of the input parameters in a 
covariance matrix to calculate the errors of the output. This matrix can be estimated with a 
Monte Carlo simulation, or in some cases solved analytically.   

The triple collocation is a technique to estimate the magnitude of the time variable term of 
soil moisture, but does not address the bias term. This technique can be applied at global 
scale, but three independent datasets are needed with a sufficient long data record ( 100 
triplets is the minimum boundary, 500 is advised) 

Finally, the R-metric is a tool to quantify the value of soil moisture retrievals. The R-metric is 
based on the notion that an overestimate of the simulated error in rainfall would require 
removal of water and, vice versa, an underestimate of the simulated error in rainfall would 
require addition of water. The water quantity would generally be a function of soil moisture.  

R-metric is a measure of added skill, sensitive to both the accuracy of a soil moisture product 
and the accuracy of a rainfall estimate driving a model-based estimate of soil moisture.  This 
fits in with the notion that measuring the added value of remotely sensed observations 
relative to a reference piece of information is important for assessing the higher-level value 
associated with an assimilated soil moisture product. 
The challenge remaining is to optimize all currently existing, and possibly newly developed, 
verification approaches to determine the skill of  ECV soil moisture datasets. Parallel to such 
quality assessment, a method to harmonize the error budgets obtained by the different 
techniques should be developed. Likely, there is no optimal verification technique and the 
optimal methodology probably lies in combining the various techniques as discussed in this 
document. 
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2 Introduction  

2.1 Purpose of the Document  

The Comprehensive Error Characterisation Report (CECR) shall provide a comprehensive 
overview of all known errors of the Essential Climate Variable (ECV) soil moisture data sets 
to be generated by the CCI Soil Moisture project. A good understanding of all errors is 
essential to distinguish real trends in the soil moisture time series from artificial trends 
caused by changes in space instrumentation, sensor degradation, and retrieval errors. Yet, 
our understanding of errors is far from complete. Additionally, given the significant natural 
variability of soil moisture on short time- and space scales, detecting drifts in the absolute 
value, dynamic range, and accuracy of the ECV soil moisture time series can be expected to 
be very challenging. This document is thus intended ǘƻ ōŜ ŀ άƭƛǾƛƴƎ ŘƻŎǳƳŜƴǘέ ǿƘƛŎƘ will be 
updated on a regular basis to account for new theoretical insights and validation results. 

2.2 Targeted Audience  

This document targets mainly 

1. Remote sensing experts interested in the retrieval and error characterisation of soil 
moisture from active and passive microwave data sets 

2. Users of the remotely sensed soil moisture data sets who want to obtain a more in-
depth understanding of the errors 

3 Reference Documents 

[RD-1] ESA Climate Change Initiative Phase 1, Statement of Work for Soil Moisture and Ice 
Sheets, European Space Agency, EOEP-STRI-EOPS-SW-11-0001. 

[RD-2] Technical Proposal (Part 3) in response to ESA Climate Change Initiative Phase 1 
ESRIN/AO/1-6782/11/I-NB, Vienna University of Technology. 

[RD-3] ESA Climate Change Initiative Soil Moisture Algorithm Theoretical Baseline Document 
(ATBD) version 0, European Space Agency 

 

  



 

Comprehensive Error Characterisation 
Report (CECR) 

Version 0.7 

Date 21 May 2012 

 

 

6 

4 Definition of Terms   

 

Term Definition 

Error The actual difference between the measured value and the true value. 

Uncertainty The component of a reported value that characterises the interval of 
values within which the true value is asserted to lie. 

Validation The assessment process through which it is determined whether the 
model accurately predicts the observed phenomena within a certain 
margin of an error, the error being computed as the difference 
between the measured and the true. 

Absolute accuracy The accuracy associated with comparison between a sensor-derived 
estimate value of soil moisture, and a soil moisture value obtained 
from an in-situ measurement. A measure of absolute accuracy 
incorporates both the relative accuracy, and the uncertainty 
associated with sensor-calibration standards. 

Relative accuracy The accuracy of a soil moisture measurement derived from the 
ƛƴƘŜǊŜƴǘ ƛƴǎǘǊǳƳŜƴǘ ŀŎŎǳǊŀŎȅ ǊŜƭŀǘƛǾŜ ǘƻ ǘƘŜ ƛƴǎǘǊǳƳŜƴǘǎΩ ŎŀƭƛōǊŀǘƛƻƴ 
standards, and not in-situ soil moisture measurements. As such, it 
does not incorporate the uncertainty associated with sensor-
calibration standards. 

Precision The reproducibility of the measurement. 

Stability The ability of the measurement to maintain constant over a stated 
time. 

Representativeness The degree to which the smaller sample of data that was extracted 
from a larger dataset and subsequently tested, is similar to the larger 
dataset (representative of the population data) in terms of the range 
of their statistical summary measures. 

Error co-variance matrix A statistical tool which allows one to study the structure of covariances 
amongst different error terms.  

Sensitivity Change in the response of a measuring instrument divided by the 
corresponding change in the stimulus. 

5 Sources of Errors  

Errors have different sources, some of them are related to sensors and scaling, and others 
are more related to the described algorithms. A more thorough description of the sources of 
error contributing to uncertainty in the data products can be found below. 
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5.1 Instrument -Related Errors  

5.1.1 Microwave radiometers  

The radiometer calibration accuracy budget, exclusive of antenna pattern correction effects, 
is composed of four major contributors: warm load reference error, cold load reference 
error, non-linearitȅΩs and errors with radiometer electronics.  

The following factors contribute to the warm load reference error:  

¶ Accuracy of the platinum resistance thermistors (PRTs) 
¶ Temperature gradient over the load area 
¶ Load-feedhorn coupling errors inherent in the system design 
¶ Reflections from the feedhorn caused by receiver electronics 

The cold load reference error is primarily caused by coupling between the cold sky reflector 
and the feedhorn. Other factors include the reflections from the feedhorn caused by 
receiver electronics and the resistive losses of the cold sky reflector itself.  

The main factor responsible for non-linearity in radiometer electronics is imperfections in 
the square-law detector. This non-linearity results in an error that is easily estimated during 
the thermal vacuum calibration testing. The receiver's electronics produce a gain drift due to 
the temperature variation over one orbit, depending on the design of the receiver and 
overall design of the sensor.  

The radiometric sensitivity of a sensor can be estimated and is often described in literature. 
The sensitivity is estimated by computing the temporal root mean square amplitude of a 
particular pixel in the image, when observing a constant target. Table 5.1 gives an overview 
of the radiometric sensitivity of the different radiometers. 

The sensitivity between different sensors varies significantly, with relatively low errors for C 
(~7 GHz) and X (~11 GHz) band observations ( between 0.3-0.8 K) and higher instrumental 
errors for L-band (~1.4 GHz) sensors (between 0.5-4.5 K).  the main reason for this error is 
due to the lower natural emission at L-band, compared to C and X band and a more complex 
antenna is needed to measure the emission at 1.4 GHz, resulting in a lower sensitivity.  
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Sensor Period Frequency (GHz) Radiometric 
Sensitivity (K) 

Geolocation 
error (km) 

Nimbus-SMMR
1,2

 Oct 78 Aug 87 6.6, 10.7, 18, 21, 37 0.7, 0.8, 0.9, 1, 1.4 12 

DMSP-SSM/I
3,4

 Aug 87 present 19.4, 22.2, 37, 85.5 0.8, 0.8, 0.6, 1.1 8 

TRMM-TMI
5
 Nov 97 present 10.7, 19.4, 21.3, 37, 85.5 0.3, 0.4, 0.5, 0.4, 0.5  

AQUA-AMSR-E
6,7

 Jun 02 Oct 11 6.9, 10.7, 18.7, 23.8, 36.5, 89 0.3, 0.7, 0.7, 0.6, 0.7, 1.2 0.425-1.425 

Coriolis Windsat
8,9

 Feb 03 present 6.8, 10.7, 18.7, 23.8, 37 0.5, 0.4, 0.4, 0.6, 0.5 1-3  

SMOS
10

 Nov 09  present 1.4 1.5-4.5  0.4 

Aquarius
11

 Apr 11 present 1.4 0.5  < 15 km 

SMAP
12

 2014 ?        1.4 1.5   

GCOMW-AMSR II
13

 Jun 2012  6.9, 7.3, 10.7, 18.7, 23.8, 
36.5, 89 

0.3, 0.3, 0.6, 0.6. 0.5, 0.5, 
1 

 

1Gloerssen and Barath, 1977; 2Choudhury et al., 1992, 3www.ssmi.com; 4Goodberlet and Swift, 1992 5trmm.gsfc.nasa.gov;  
6ghcc.msfc.nasa.gov; 7Wiebe, 2007; 8Gaiser et al., 2004; 9Purdy et al., 2006 10Martin-Neira et al., 2010; 11Cabot et al., 2007 
12aquarius.gsfc.nasa.gov, 13smap.jpl.nasa.gov 14http://sharaku.eorc.jaxa.jp/AMSR/ov_amsr/sensor.html 

Table 5.1: Overview of the  radiometric sensitivity  and geolocation error for different passive microwave 
sensors . 

Another source of error related to the instrument deals with the geolocation. Geolocation is 
the process of determining the geographic latitude and longitude of the center point of the 
footprint. Geolocation of satellite data is a standard part of the past launch calibration 
process (Purdy et al., 2006) and gives insight in the absolute mapping skill of the sensor. The 
geolocation error is related to the accuracy of the incidence angle, polarization rotation 
angle, scan azimuth angle, spacecraft attitude and GPS data.  In table 5.1 also the different 
geolocation errors are given.  Unfortunately,  geolocation errors are hard to find in literature 
and it is not always clear how these errors are obtained. Therefore a geolocation error 
assessment for different satellites sensors (in relation to frequency and bandwidth) is 
recommended. 

A final error related to the satellite system is the orbital decay. Especially the early sensors 
SMMR and SSM/I suffered from this. Orbital decay is the process of prolonged reduction in 
the altitude of a satellite's orbit. This can be due to drag produced by an atmosphere due to 
frequent collisions between the satellite and surrounding air molecules. For the Nimbus 7 
SMMR satellite, the orbital decay resulted in an observational drift of a few kilometers over 
its entire lifespan.  Orbital decay can be a serious issue for trend analysis because it can 
create artificial trends in datasets (Wentz and Schabel., 1998).   

5.1.2 Scatterometers  

Scatterometers are real apertures radars with a set of antennas to transmit pulses of energy 
to the Earth surface and precisely measure the backscattered energy. Backscattering 
characteristic of the target is deduced by the aid of the radar equation considering the ratio 
of backscattered and transmitted energy, distance to the target, used wavelength and the 
antenna gain. Systematic errors like degrading transmitter energy, noise, antenna miss-
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ǇƻƛƴǘƛƴƎ ƻǊ ŀ ŘŜƎǊŀŘƛƴƎ ǎŀǘŜƭƭƛǘŜ ŀƭǘƛǘǳŘŜ ƘŀǾŜ ǘƻ ōŜ ƳƻƴƛǘƻǊŜŘ ǘƻ ƎǳŀǊŀƴǘŜŜ ŀ ǇǊƻǇŜǊ ˋ0 
estimate. 

Therefore, two calibration strategies were introduced to monitor the radiometric accuracy 
and the radiometric stability of the instrument. 

¶ Internal calibration 

¶ External calibration  

On board internal calibration is performed to compensate for contribution of thermal noise 
to the backscattered energy and calibration pulse measurements to monitor variations of 
the transmitter power and the receiver gain. Hence, this calibration strategy is used to 
monitor and detect any anomalies of the instrument behavior. Internal calibration data is 
used to correct for these anomalies during ground processing of the downlinked raw data. 

External calibration of the instrument is performed to ensure that the backscattered energy 
measured by the instrument is correct (absolute calibration) for all incidence angles (relative 
calibration). External calibration is done in a separate calibration mode of the instrument, 
using ground base transponders which are active devices with a precisely known radar cross 
section and location. The instrument receives the transmitted transponder pulse which can 
be analyzed to establish a reference calibration system to monitor the system performance. 
Furthermore any antenna miss-pointing can be detected due to the accurate knowledge of 
the transponder location. A second external calibration strategy is using natural distributed 
targets (e.g. rainforest, ocean or sea ice) to monitor or correct for variations according to the 
incident angle. This method allows a relative calibration based on models developed for 
these natural targets. 

Especially external calibration enables the determination of the radiometric accuracy, inter-
beam stability and location accuracy. Table 5.2 summarizes these properties for both 
scatterometers on board of MetOp and ERS-1/2. 

 

Performance Parameter Units MetOp ASCAT
1
 ERS-1/2 AMI WS

1,2
 

Number of Swath  2 1 
Spatial Resolution:    
     Nominal km 50 50 
     Experimental/High Res. km 25-37 25 
Radiometric accuracy dB 0.47 to 0.55 - 
Inter-beam stability dB 0.33 to 0.41 0.46 
Radiometric resolution % 3.0 6.5 ς 7.0 
Location accuracy km 4.4 5 
1Gelsthorpe, R.V., Schied, E., and Wilson, J.J.W. 2000. ASCAT-aŜǘhǇΩǎ ŀŘǾŀƴŎŜŘ ǎŎŀǘǘŜǊƻƳŜǘŜǊΦ 9{! .ǳƭƭŜǘƛƴ млнΦ !ǾŀƛƭŀōƭŜ ŀǘ 
<http://esapub.esrin.esa.it/bulletin/bullet102.htm>.2Naeimi, Vahid, 2009, PhD Thesis, Model improvements and error characterization for 
global ERS and METOP scatterometer soil moisture data, Technische Universität Wien 

Table 5.2: Overview of Scatterometer Performance 
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5.2 Algorithm -Related Errors  

AMSR-E was the first widely used passive microwave radiometer to be used for the retrieval 
of soil moisture, therefore several algorithms exist (Njoku & Chan 2006; Paloscia et al., 2006; 
Owe et al., 2008; Jackson et al., 2004). Most of these algorithms are based on the radiative 
transfer theory of Mo et al. (1982) who described a simple physically based model that can 
effectively estimate the radiation by the soil surface, even if this surface is covered under 
ǾŜƎŜǘŀǘƛƻƴΦ {ǳŎƘ ǊŀŘƛŀǘƛǾŜ ǘǊŀƴǎŦŜǊ ƳƻŘŜƭǎ ŀǊŜ ŎƻƳƳƻƴƭȅ ǊŜŦŜǊǊŜŘ ǘƻ ŀǎ ˖-ˍ ƳƻŘŜƭǎ ŀƴŘ ŀǊŜ 
used for describing the emission of microwave radiation from the soil surface as observed 
from above the canopy. These observed brightness temperatures are the sum of three 
terms: the canopy attenuated soil emission, the vegetation emission reflected by the soil 
and attenuated by the canopy and the direct vegetation emission. Other retrieval algorithms 
use a completely different approach called neural networking. This is based on feeding 
models with large amounts of data to train them in recognizing data relationships, than the 
soil moisture retrieval algorithm can tell the network how to behave in response to an 
external stimulus. 
 
DŜƴŜǊŀƭƭȅΣ ǎŜǾŜǊŀƭ ŀǎǎǳƳǇǘƛƻƴǎ ŀǊŜ ƳŀŘŜ ŦƻǊ ǘƘŜ ǇƘȅǎƛŎŀƭƭȅ ōŀǎŜŘ ˖-ˍ ƳƻŘŜƭǎΦ {ǳŎƘ 
assumptions may lead to algorithm related errors, and some examples are addressed in 
more detail. One of the assumptions all radiative transfer based approaches have in 
common is related to the thermodynamic temperatures of the soil and canopy. The land 
ǎǳǊŦŀŎŜ ǘŜƳǇŜǊŀǘǳǊŜΣ ǿƘƛŎƘ ƛǎ ŀƴ ƛƴǇǳǘ ŦƻǊ ˖-ˍ ƳƻŘŜƭǎΣ ƛǎ ŀǎǎǳƳŜŘ ǘƻ ōŜ ǘƘe area mean of 
ǘƘŜǎŜΦ hǘƘŜǊ ƛƴǇǳǘ ǇŀǊŀƳŜǘŜǊǎ ŦƻǊ ˖-ˍ ƳƻŘŜƭǎΣ ǎǳŎƘ ŀǎ ǘƘŜ ǎƛƴƎƭŜ ǎŎŀǘǘŜǊƛƴƎ ŀƭōŜŘƻ ŀƴŘ 
surface roughness, lack detailed information which leads to several assumptions.  

Assumptions made in the neural networking approach are different in the sense that they 
ŘƻƴΩǘ ƘŀǾŜ ŀƴȅ ǇƘȅǎƛŎŀƭ ōŀŎƪƎǊƻǳƴŘΦ ¢ǊŀƛƴƛƴƎ ǇŜǊƛƻŘǎ ŀƴŘ ǎƛǘŜǎ ŀǊŜ ǎŜƭŜŎǘŜŘ ǳƴŘŜǊ ǘƘŜ 
assumption that the training data represents the hypothetical truth to find optimal 
convergence based on empirical relations. 

The WARP algorithm used for ASCAT processing employs a simple semi-empirical model to 
obtain normalised from raw backscatter values, which are then related to the historically 
lowest and highest normalised backscatter values at a given location. The model rests on 
several assumptions, which, when violated, will result in inaccurate or even meaningless soil 
moisture estimates.  For example, a key assumption is that backscatter expressed in dB is an 
increasing linear function of the soil moisture. However, it was observed that in some 
locations under extremely dry conditions, backscatter may actually increase rather than 
decrease. The presence of snow, ice or open water bodies poses similar problems. These 
cases have to be detected and flagged accordingly. 

The above modelling errors are rooted in a discrepancy between the real physical processes 
we are interested in, and our incomplete understanding and possibly oversimplified 
description of these processes. A related issue is the noise model, which deals not so much 
with the physical parameters we want to retrieve, but with the uncertainty of our knowledge 
about them. It describes how the uncertainties in the original measurements transform 
along the processing chain and thus affect the uncertainty of the final product. In WARP, this 
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is done mainly via error propagation (see 6.1).  The noise model, like the physical model, has 
to rely on assumptions that may not always hold in practice, but are made to allow for a 
more efficient implementation of the algorithm. For example, in the WARP error 
propagation scheme, second order dependencies between input variables are often 
neglected, i.e., they are assumed to be uncorrelated. 

5.3 Scaling Errors  

Recently, significant progress towards operational soil moisture remote sensing products 
was made which resulted in several data sets having global coverage. However, accurate 
estimates of error structures are still needed for these datasets (Scipal et al. 2008). 
Validation against in situ observations is difficult because the observation sites often span a 
limited geographic region there is always a mismatch between the small support of the 
point-scale in situ measurement and the large support of remote sensing data products. 
Additionally, several studies showed that uncertainties of remotely sensed soil moisture 
products differ per climate regime. In remote-sensing applications, as in physically based 
modelling of land-surface processes, the representation (inclusion) of subgrid-scale 
variability in coarse resolution data remains a challenge. The problem is one of spatial 
interpolation, up-scaling or downscaling. Essentially this is a result of the discrepancy 
between the coarse spatial scales (and often temporal scales) of available data and the fine 
scales necessary for meaningful research and applications. 

Soil moisture influences a range of environmental processes in a nonlinear manner leading 
to scale effects that need to be understood for improved prediction of moisture dependent 
processes. Similarly, several spatially and temporal varying environmental processes (e.g. 
hydro-meteorological variables, such as precipitation and evapotranspiration) influence soil 
moisture itself. According to Blöschl & Sivapalan (мффрύ ōƻǘƘ ƳŜŀǎǳǊŜƳŜƴǘǎΩ ŀƴŘ ƳƻŘŜƭǎΩΣ 
scale can be thought of as consisting of a triplet of characteristics: support, spacing, and 
extent.  

1) Support is the area (or time) over which a measurement averages the underlying 
variations, or over which a model assumes homogenous conditions. As support 
increases, variability decreases due to the effects of averaging, and small-scale 
features disappear.  

2) Spacing is the separation between points at which measurements are made or 
between computational points in a model. As the spacing increases, the amount of 
detail resolved decreases, leading to an apparent increase in the spatial size of 
features. Quite counter-intuitively Western & Blöschl 1999 show that, the variability 
in the data is apparently unaffected.  

3) Extent refers to the total coverage of the measurements or model computational 
domain. As extent increases, larger scale features are included in the data, and both 
the variability and the average size of the features tend to increase. 
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Figure 5.1 illustration of  each component of the scale triplet. 

In theory these problems typically involve using information from one scale to make 
predictions at a scale that has a greater information requirement; i.e., taking sparse data and 
estimating intervening values, taking real averages and disaggregating, or taking results at 
small extents and extrapolating to larger areas. Also, scaling often involves changing more 
than one component of the scale triplet at a time (e.g., often both support and spacing 
change together) (Western et al. 2002). The practical challenge in reference to the CCI soil 
moisture project is to take sparse data and estimate intervening values from relatively 
sparse in-situ measurements, while averaging those values over a relatively large (Land 
Surface Model grid cell or remote sensing data grid cell) area. The essence of successful 
scaling is to filter the key patterns from information at support scale and to use these to 
make good predictions at model and or remote sensing data scale. These types of efforts 
usually rely on a suite of relevant auxiliary information ranging from digital elevation models, 
land cover characteristics to meteorological time series data (Western & Blöschl 1999). 

 

5.3.1 Spatial Scaling Issues 

Spatial scaling techniques can be divided into behavioural techniques and process-based 
techniques. Behavioural techniques focus on quantifying the apparent observable behaviour 
of soil moisture patterns as a function of scale and to use this quantification to predict the 
effects of changing scale. These techniques rely on data and statistical analysis, which may 
be combined with a conceptual understanding of process controls through the use of 
ancillary data. In contrast, process-based techniques aim for a deeper understanding of the 
physical processes causing the spatial patterns of soil moisture. They utilize a conceptual 
understanding of soil moisture process and physics, usually within a deterministic 
reductionist framework of distributed water balance modelling and or Land Surface Model, 
to predict the effects of changing scale. At small scales, soil moisture responds to variations 
in vegetation (Qui et al. 2001), soil properties (Famiglietti et al. 1998), topographically driven 
variations in lateral flow (e.g., Dunne & Black 1970a,b), radiation (e.g., Western & Blöschl 
1999), and precipitation.  

As spatial scale increases, different sources of variation become apparent. Variation in 
vegetation shifts from plant to patch scale and then finally to community scales. Soil 
properties vary as different soil types and geomorphological features interact. Variations in 
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rainfall patterns can occur at spatial scales as small as hundreds of meters due to the 
passage of storm cells (Goodrich et al. 1995)); however, the long-term effect on soil 
moisture variability may be observed at larger space scale as the soil profile stores 
precipitation over time and thus tends to smooth some of the spatial and temporal 
variations in instantaneous rainfall rates. Obviously, at spatial scales of several kilometres, 
examples of soil moisture variability are evident due to spatial variability in event rainfall 
depth.  

At still larger scales, climatic variability and variations in precipitation depths lead to 
substantial changes in soil moisture conditions between climate regions. Variations in 
humidity, temperature and radiation also have an effect on soil moisture through 
evapotranspiration processes. All of the factors affecting the distribution of soil moisture 
discussed above are correlated in space to some degree. For example, rainfall depth and 
intensity is likely to be more similar for two points 1 m apart than for two points 1 km apart. 
These spatial correlations form spatially correlated soil moisture patterns. Lateral 
redistribution of soil water also increases spatial variation and correlation (Western et al. 
2002) 

Lateral moisture fluxes present a specific problem and soil moisture estimate error source 
for most Land Surface and Hydrological Models applicable on mesoscales. Mesoscale 
models, even if distributed, cannot usually take into consideration lateral moisture transport 
from one computational node to another. Instead lateral moisture transport is usually 
handled by a separate routing model. In essence usually this means that lateral moisture 
transport is assumed to exit a Land Surface System, and only exist in a stream network (or 
being routed to one, by the routing model), once it is determined to have left a particular 
cell. 

 

5.3.2 Temporal Scaling Issues 

The largest temporal scale feature of a time series is seasonal variation in soil moisture. This 
occurs in response to seasonal changes in the balance between evapotranspiration (ET) and 
precipitation. Overlaid on this seasonal cycle is a series of wetting and drying periods with 
time scales related to storm duration and inter-storm periods, respectively. The rate of 
depletion during drying periods is mainly related to the rate of evapotranspiration and 
drainage divided by the rooting depth. The contrast in the rates of change for increasing and 
decreasing soil moisture is primarily related to differences in flux magnitudes in precipitation 
and evapotranspiration processes (Western et al. 2002). 

Grayson et al. (1997) discuss the theoretical presence of preferred states in the temporal 
distribution of soil moisture. Where ET dominates over precipitation, soil moisture tends to 
be consistently low. Similarly, where precipitation dominates over ET, soil moisture tends to 
be consistently high. This behaviour is a consequence of the bounded nature of soil 
moisture. In many landscapes there is a seasonal shift between these two states. In 
landscapes where there is significant lateral movement of water, this temporal behaviour 
corresponds with a change in controls on the spatial soil moisture pattern from being 
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dominated by local vertical fluxes during the dry state to being dominated by lateral fluxes 
during the wet state.  

6 Error Characterisation Methods  

6.1 Error Propagation  

Error propagation is a standard technique for estimating the noise of quantities inferred 
from noisy data. Let  ὀ ὼȟȣȟὼ  be an actual p-dimensional observation vector. x is 

assumed to be an instance of a p-dimensional random variable, with known covariance 
matrix Ἅὀ. We are interested how the covariance transforms under a mapping  ὁ Ὢὀ, 
i.e., given x and f, we would like to know the covariance of y, Ἅὁ. If f is a linear mapping of 

the form ὁ Ἃὀ Ἢ, then the covariance transforms like 

 Ἅὁ ἋἍὀἋ
ἢ (6.1) 

whereby Ἃdenotes the transpose of Ἃ. 

If, on the other hand, f is a non-linear mapping, we first linearise it by replacing it by its first 
order Taylor approximation about the operation point ὀ: 

  ◐ █ὀ █ὀ▫
⸗█

⸗ὀ
ὀ ὀ▫  (6.2) 

whereby the matrix 
ὀ

 with elements  

 
⸗█

⸗ὀ
░▒

⸗█░
⸗●▒

 (6.3) 

 is the Jacobian of f. Putting everything together, we finally obtain 

 Ἅὁ
⸗█

⸗ὀ
Ἅὀ

⸗█

⸗ὀ

╣

 (6.4) 

for the covariance matrix of y under the mapping f.  

Error propagation is a general, conceptually simple and widely used technique for obtaining 
error characterisations.  It only requires that  

¶ the covariance matrix of the inputs is known 

¶ the Jacobian of the transformation that acts on the inputs can be computed. 

In practise, it is also often assumed that that inputs are uncorrelated (or the correlations are 
negligible), which will simplify the computations involved. In cases where the transformation 
is so complex that its Jacobian with relation to the inputs cannot be obtained, a Monte Carlo 
approach could be employed alternatively (however, this is often computationally 
prohibitive). 

A possible shortcoming of error propagation is that it characterises the error distribution of 
the product solely in terms of its covariance matrix. If the full error distribution is required, 
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this could be obtained either empirically using Monte Carlo, or analytically, for example,  
within the Bayesian framework. 

6.2 Standard Statistical Measures  

The interest in evaluation studies of climatological and environmental model datasets has 
grown rapidly (Wilmot and Matsuura, 2005). Such evaluations provide the basic means of 
assessing the performance of models and algorithms. Interest has also arisen in determining 
which statistical measures should be recommended and how these differ based on an 
application. The commonly used evaluation measures in soil moisture campaigns are the 
correlation coefficient R (Brocca et al., 2010) and RMSE (Jackson et al., 2010). Regrettably, it 
is the RMSE that is also the most misinterpreted error measure (Brocca et al., 2010) .  

This section introduces and interprets the commonly used evaluation statistical measures. 
Measures of standardisation (Unit Transformation, Linear matching, CDF matching, and SWI 
computation), are firstly outlined as a clear understanding of standardisation methods is 
essential to deriving an appropriate error evaluation approach. This section then introduces 
and interprets measures of absolute difference (RMSE, mean average error, mean bias), 
followed by those of relative agreement (R, R2 and Rs and Covariance) between the models 
and the algorithms, which form the basis of current error evaluation of Satellite-derived soil 
moisture datasets. It is notable that while the absolute measures assess the effect of 
random and the systematic error, the relative measures appraise the association of phasing 
between the separate datasets. Furthermore, relative measures usually normalize the 
absolute measure by dividing it either by the dataset itself, or by its variance or standard 
deviation. In doing so, it makes it spatially comparable and independent of the absolute 
magnitude. 

6.2.1 Statistical measures of standardisation  

Soil moisture products can be (i) derived from the remotely sensed datasets, (ii) measured 

in-situ at ground level, or (iii) modeled with the models describing water dynamics and water 

use. This variety of different estimate-retrieval and modeling strategies can result in there 

being notable differences in the represented a) depth, b) spatial extent and c) units. Such 

differences prevent measuring an absolute agreement between the time-series (Brocca et 

al., 2011) and assimilation of the dataset into models (Dee & Todling, 2000), and are 

commonly removed using a set of transformation steps.  

In this section, four transformation, or standardisation measures are summarised, which 

serve to minimise the systematic differences in the soil moisture datasets. These include:  

¶ Unit Transformation - the conversion of the dataset values into values of volumetric 
soil moisture, 

¶ Linear matching - removing the differences in the mean or in both the mean and 
variance of two time-series, 
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¶ Cumulative Distribution Function (CDF) matching - a non-linear approach which 
applies mathematical relationships to convert the climatology of one dataset into a 
second dataset, 

¶ Soil Water Index (SWI) computation - an approach that simulates soil moisture at 
deeper layers using an exponential filter. 
 

The Table 1 suggests which of the latter methods should be used to remove systematic 

differences caused by scaling, the differences in depth and the differences in units. 

 

Table 1. Sources of systematic differences between soil moisture datasets and suggested methods for 
their removal. 

Source of Systematic difference Method to remove it 

Differences in scaling CDF matching 

Linear matching 

Differences in depth SWI filter computation 

CDF matching 

Linear matching 

Differences in units Unit transformation 

 

 

6.2.1.1 Unit transformation 

 

The soil moisture products can originate from in-situ measurements, from estimates derived 

from earth observation sensors, and models based on water dynamics and water use. This 

can lead to values being expressed in variety of units. The transformation of these units into 

a comparative format is a critical prerequisite for successful evaluation of the soil moisture 

datasets. This summary briefly introduces the most frequently used soil moisture units, and 

presents methods for their transformation to the volumetric unit. 

 

The most commonly used soil moisture unites are the volumetric units. These express the 

volumetric fraction of water in a given soil depth [m3 water per m3 of soil] or the depth of a 

column of water contained in a given depth of soil [mm water per mm soil]. The volumetric 

fraction ranges between 0 (completely dry) and 1 (full saturation) and is used in a large 



 

Comprehensive Error Characterisation 
Report (CECR) 

Version 0.7 

Date 21 May 2012 

 

 

17 

number of soil moisture networks (i.e. OzNet, REMEDHUS or the AMMA) and satellite soil 

moisture products (Advanced Microwave Scanning Radiometer (AMSR-E), Special Sensor 

Microwave Imager (SSM/I)). To convert the brightness temperature retrieved from the  

satellite products to volumetric units the Land Parameter Retrieval Model developed  by the 

NASA  and  the  VU  University  of  Amsterdam (LPRM) is used (Owe et al., 2008). 

 

Soil moisture datasets can also be expressed in relative units, which are commonly used for 

microwave satellite-derived soil moisture products. These present a measurement of the 

change in the retrieved signal relative to its maximum dynamic range. An example of such 

dataset is the Earth Resource Satellite (ERS)(Wagner et al., 1999a), the Advanced 

Scatterometer (ASCAT) (Bartalis et al., 2007) or the Advanced Synthetic Aperture Radar ASAR 

GM (ASAR GM) soil moisture product (Pathe et al., 2009). The backscatter measurements 

are converted to soil moisture estimates by applying the TU Wien soil moisture retrieval 

algorithm (Wagner et al., 1999b).  

 

Another further unit for expressing soil moisture is the Gravimetric Water Content defined 

ŀǎ ǘƘŜ Ǌŀǘƛƻ ōŜǘǿŜŜƴ ǘƘŜ Ƴŀǎǎ ƻŦ ǿŀǘŜǊ ŀƴŘ ǘƘŜ Ƴŀǎǎ ƻŦ ŘǊȅ ƳŀǘǘŜǊ όDƭƛƵǎƪƛ et al., 2011). The 

gravimetric method is a commonly used method for calibration of other indirect 

measurements. Less common soil moisture measures of soil moisture are the Fraction of 

Saturation and the Plant Available Water (PAW). Fraction of saturation (Cox, 2001; Topp & 

Ferré, 2002) is defined as the fraction to which the pores are filled with water. Soil usually 

contains a pore fraction of less than 0.5. If this fraction is completely occupied by with water, 

the soil reaches its maximum soil moisture saturation. A useful definition to envision the 

Fraction of Saturation is defining it as the volume of water to volume of voids. The PAW 

represents portion of the soils water holding capacity that is available to be absorbed by a 

plant (Ritchie, 1981; Sadras & Milroy, 1996). 

 

Volumetric units are becoming standard soil moisture units in the Earth Observation (Dorigo 

et al., 2011) and have been selected as the reference standard for unit transformation. Here, 

a set of transformation techniques are presented that serve to transform the introduced soil 

moisture measurement units, to standardised volumetric soil moisture units. 

 

The conversion of gravimetric soil moisture to volumetric soil moisture is achieved using the 

expression: 
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 — ύ
”

”
ȟ (6.2-1) 

where ʍb and ʍw represent the dry bulk density and water density respectively, and w 

represents the gravimetric soil moisture value.  As in the equation (6.2-2) the quality of the 

ancillary parameters strongly influences the quality of the final product. The conversion 

technique is highly applicable long homogeneous climatological records (Robock et al., 

2000). Currently, most systematic observations are based on indirect methods; however, 

calibration typically requires using the gravimetric method ( Dorigo et al., 2011). An example 

of the network using this gravimetric method is the IOWA network in southwest Iowa (Entin 

et al., 2000; Robock et al., 2000) or the RUSWET-AGRO and RUSWET-VALDAI networks in the 

former Soviet Union. 

 

The transformation of the PAW to volumetric soil moisture is achieved using the expression: 

 — ὖὃὡ — ȟ (6.2-2) 

where PAW represents the Plant Available Water and ῪWP the permanent wilting point. 

Below the wilting point, water is retained by the soil matrix and is not accessible to plants 

(Hillel, 1982). The wilting point depends on soil properties such as soil texture, and varies 

geographically. 

 

The conversion of the Degree of Saturation to the volumetric soil moisture is achieved using 

the expression: 

 — ὖίȟ (6.2-3) 

where P defines the total porosity and ῪV the volumetric soil moisture. It is evident that the 

quality of the conversion strongly depends on the quality of the porosity estimate.  

 

Soil moisture data retrieved from the ERS, ASCAT and MetOp-A satellites are provided in 

relative units. These can be directly converted to the absolute volumetric units (Mladenova 

et al., 2010) using following expression: 
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 Ὓὓ — ρ
”

”
— —ȟ (6.2-4) 

where SM represents the absolute soil moisture, ʍb and ʍs, the dry soil bulk density and 

density of soil particles respectively, and, ɡr  represents the residual soil moisture. For a 

high quality estimate of the volumetric soil moisture also the three ancillary parameters 

need to be of high quality. In the case of only low quality estimates being available, other 

transformation methods need to be used such as the CDF or the linear matching. 

 

The unit transformation methods do not account for the shortcomings of the ancillary data 

(i.e. texture, porosity, and organic matter content). They also do not account for the 

shortcomings of the measurement technique itself and for the differences in scaling and 

depth of the different measurements. To limit the data usage restrictions implied by such 

shortcomings, methods such as Linear Matching and Cumulative Distribution Function (CDF) 

Matching are used.  

 

6.2.1.2 Linear matching 

 

Dissimilarities in the estimate-retrieval and modeling strategy can introduce differences in 

the represented depth and spatial extent, and consequently in the mean and variance of soil 

moisture datasets (Dirmeyer et al., 2004; Entin et al., 1999). To allow for comparative 

evaluation of the distinct datasets, such differences should be removed (Brocca et al., 2011). 

Likewise, a removal of a bias is recommended for data assimilation techniques (Dee & 

Todling, 2000), allowing for statistically optimal analyses. To remove the differences in the 

mean and variance a linear matching technique can be used. For a removal of higher order 

moments a non-linear Cumulative Distribution Function (CDF) matching approach is 

recommended  

 

For linear matching two approaches are commonly used. The first is based on the application 

of a regression equation between two evaluated datasets, minimising the RMSE (RMSD) 

between the compared datasets, and removing the differences in means (Jackson et al., 

2010).  
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A second approach removes differences in both the standard deviation and the mean 

(Brocca et al., 2010; Draper et al., 2009). In particular, the matched dataset y is computed 

using pairs of (xor,i, yi,) as follows: 

 
ὼ

ίὸὨὩὺὼ ȟ

ίὸὨὩὺώ
ὼ ȟ ὼ ώȟ (6.2-5) 

where i =1,...,n, n is the total number of elements, ὼ  is the mean of all xor,i, ώ is the mean 

of all yi and x represents the rescaled xor. The formula can be rewritten into a linear form as 

 ὼ ὄὼ ȟ ὃ, (6.2-6) 

where the local coefficients A and B are defined as 

 ὃ ώ
ίὸὨὩὺώ

ίὸὨὩὺὼ ȟ

ὼӶ (6.2-7) 

and  

 ὄ
ίὸὨὩὺώ

ίὸὨὩὺὼ ȟ

Ȣ (6.2-8) 

Here, parameter B mirrors the difference in the variability of the individual datasets, whilst 

parameter A reflects a combination of differences of both the variability and the mean. 

Implicitly, these parameters also refer to different soil types, land cover and climate (Scipal, 

Drusch, & Wagner, 2008). Importantly, the transformed dataset automatically shares the 

climatology of the reference data or a model. 

 

6.2.1.3 Cumulative Distribution Function (CDF) matching 

 

The non-linear version of the matching function is the Cumulative Distribution Function 

(CDF). This removes the differences due to different depth, scaling and calibration by 

applying mathematical relationships that transform the climatology of one into a second 

dataset. It is performed by matching the cumulative distribution functions of two datasets, 

using a linear or polynomial fitting. Depending on the order of the fitted polynomial, 
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equivalent number of moments is mitigated. For example, a 3rd order polynomial could 

correct differences in the first four moments (the mean, the variance, the skewness and the 

kurtosis) (Drusch et al., 2005).  

 

The actual computation of the CDF function is performed in three separate steps.  

(i) The datasets are ranked.  

(ii) The differences in soil moisture between the corresponding ranks of the two 

datasets are computed. 

(iii) The observation operators are computed as a polynomial fit between the 

computed differences and the ranked observed soil moisture (Drusch et al., 

2005). These remove the systematic differences between both datasets. 

Importantly, the observation operators are defined by the type of the 

observations, in particular, by their specific statistical properties and distributions 

(Drusch et al., 2005). 

 

If the statistical distribution of the data allows, and if only small differences are expected in 

higher moments, linear matching is preferable to more computationally demanding CDF 

matching. 

6.2.1.4 Soil Water Index (SWI) computation 

 

This exponential filter can be used to account for difference incurred by variations in depth 

of different soil moisture measurements. It simulates the soil moisture value deeper soil 

layers, on the basis of the soil moisture measurements of the shallow soil moisture, and an 

exponential profile designed to mimic fluctuations in soil moisture over a scale of 

progressively greater soil depth. The filter relies on the analytical solution of a differential 

equation and  assumes  that  the variation in time of the average value of the soil moisture 

profile is linearly related to the difference between the surface and the profile values 

(Wagner, Lemoine, et al., 1999). In this study the version of the SWI introduced by (Albergel 

et al., 2010) is used 

 ὛὡὍ ὛὡὍ ὑ ὛὛὓὸ ὛὡὍ , (6.2-9) 

with the gain Kn at time tn given by  
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 ὑ
ὑ

ὑ   Ὡ

ȟ (6.2-10) 

where T is a characteristic time length that characterize the temporal variation of soil 

moisture within the root-zone profile and the gain Kn ranges between 0 and 1. For the 

initialization of this filter, K0 =1 and SWI0 = SSM(t0). 

 

6.2.2 Measures of absolute agreement  

 

Measures of absolute agreement are expressed in the units of the original datasets and refer 

to the positive magnitude of two variables dissimilarity. The measures outlined here provide 

informative summaries of variable dissimilarities within comparative soil moisture datasets. 

The most frequently used include Mean Absolute Error (MAE) and Root Mean Square Error 

(RMSE), however there also exist other derivative measures which together allow us to 

explore and ascertain the nature of absolute error associated with satellite-derived soil 

moisture datasets.  

These measures should be interpreted carefully as they are influenced by the mean and 

variance of the datasets. For example, the increasing MAE and RMSE can be explained by 

increasing error in the datasets. However, an increase in the mean or variance can also 

potentially contribute to their value.  

A brief summary of the current measures of the absolute agreement is provided here. It 

should be highlighted that prior consideration of pre-processing steps should always 

accompany the use of the absolute measures. For example, it  of limited use to  characterise 

bias in applications where data matching is applied, given that matching removes the 

difference in the mean and variance. 

 

6.2.2.1 Mean Absolute Error (MAE), Mean Bias Error (MBE), and Mean Percentage Error 

(MPE) 

 

The first measures of consistency between two datasets are the Mean Absolute Error (MAE) 

and Mean Bias Error (MBE), and by extension, Mean Percentage Error (MPE). All are 
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absolute measures of error, and do not normalise the final result. The Mean Absolute Error 

(MAE) of a sample of n measurements: 

 

 ὓὃὉ
В ȿὼ ώȿ

ὲ
  

 

(6.2-11) 

where xi and yi  are two continuous variables with yi being the representation of the true 

value. The measure returns the average absolute magnitude of each difference. In selected 

situations however, it is useful to know the positive or negative nature of the error. In such 

circumstances it is useful to use Mean Bias Error (MBE) the calculation of which is achieved 

using the expression: 

 

 

 

ὓὄὉ
ρ

ὲ
ὼ ώ ὼӶώ  (6.2-12) 

where xi and yi  are two continuous variables with yi being the representation of the true 

value.  MBE should be interpreted cautiously (Willmott & Matsuura, 2005), as it indicates the 

average model bias. For example, two independent datasets with the same mean can result 

in an MBE approaching zero.  

 

For communication purposes, it can also useful to express MBE in a percentage format. 

Mean Percentage Error (MPE) can be derived using the formula: 

 

 ὓὖὉ
ρ

ὲ

ρππὼ ώ

ώ
 (6.2-13) 

 

for n samples, where xi and yi are two continuous variables, and yi is the representation of 

the true value. In contrast to MAE and MBE, MPE is non-dimensional in nature, expressing 

error without the constraints of units.  

 

6.2.2.2 Root Mean Square Error (RMSE) and Root Mean Square Difference (RMSD) 
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Root Mean Square Error (RMSE) is currently the most commonly used absolute measure of 

accuracy in case of unbiased or matched datasets, and precision. It has been used in 

previous evaluation studies of soil moisture datasets (Jackson et al., 2010;  Doubková et al., 

2012; Dubois et al., 1995; Walker & Houser, 2001), with its use playing an important role in 

the assessment of mission performance criteria for the SMOS (Soil Moisture and Ocean 

Salinity) and SMAP (Soil Moisture Active Passive) missions (Miralles et al., 2010). RMSE 

signifies the closeness of two independent datasets representing the same phenomena, one 

of which represents the true set of values. In the situation where none of the independent 

datasets are assumed to be true, the term Root Mean Square Difference (RMSD) is applied 

(e.g. Lakschmi et al., 1997). In this sense, RMSD provides information about the data 

preciseness, but not about their accuracy. Both measures are defined for two continuous 

variables xi and yi as follows: 

 

 
ὙὓὛὉ ÏÒ ὙὓὛὈ

В ὼ ώ

ὲ
ȟ 

(6.2-14) 

 

where iҐмΧΣ n and n is the maximum number of measurements. Both alter the magnitude of 

each difference through its squaring and subsequent rooting. The squaring is performed to 

remove the potential negative value. However, this has the potentially negative 

consequence of quadratically penalising the bias between parameters.  

 

It should be noted that the RMSE and RMSD reflect not only the average error but also the 

variance in the error and the number of data point (Willmott & Matsuura, 2007) i.e. they 

become increasingly larger than the Mean Absolute Error (MAE) as the distribution of the 

error magnitudes becomes more variable. To assess the scale-less performance of the RMSE 

the central tendency in the RMSE needs to be removed. This can be achieved by its 

normalization with ώ, the mean of yiΩǎΣ ŀǎ Ŧƻƭƭƻǿǎ 

 

 ὲὙὓὛὉ ÏÒ ὲὙὓὛὈ
ὙὓὛὉ

ώ
 Ȣ (6.2-15) 

 

The final measure gives an estimate of the averaged, quadratically penalized, difference 

between two datasets normalized by their mean. Similar normalization can be performed 

also for the RMSD. The nRMSEm (nRMSDm) allows for a spatial comparison as it is not 
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ŀŦŦŜŎǘŜŘ ōȅ ƛǘǎ ŎŜƴǘǊŀƭ ǘŜƴŘŜƴŎȅΦ bŜǾŜǊǘƘŜƭŜǎǎΣ ƛǘ ŘƻŜǎƴΩǘ ǊŜƳƻǾŜ ǘƘŜ ŜŦŦŜŎǘ ƻŦ ǘƘŜ ŜǊǊƻǊ 

variance which it has been highlighted as complicating complicate the actual interpretation 

of RMSE (Willmott & Matsuura, 2005). This may be solved by introducing an independent 

estimate of the nRMSEs that uses the standard deviation to mitigate the error variance as 

follows 

 

 ὲὙὓὛὉ ÏÒ ὲὙὓὛὈ
ὙὓὛὉ

ίὸὨὩὺώ
Ȣ (6.2-16) 

 

Furthermore it is also worth considering that RMSE, unlike MAE, quadratically penalises 

errors and reflects their variance. For these reasons, MAE has been recommended by several 

studies as a more suitable measure of average error than RMSE (Willmott & Matsuura, 2005; 

Mielke & Berry, 2007). To keep consistency with the existing evaluation studies, it is 

recommended to compute and compare both the RMSE as well as the MAE. This could be 

extended to involve a quantification of the difference between the MAE and the RMSE, 

which may be used as an additional evaluation measure providing information on the 

variance of the errors. The smaller the difference between the RMSE and the MAE the better 

the potential of the RSME to represent the average error and the less it is affected by the 

variance in the errors. 

 

6.2.2.3 Covariance 

 

Another absolute measure, the covariance, assesses the type and the level of association 

between two continuous variables xi and yi, where xi and yi, represent the same variable. The 

calculation and use of covariance forms an integral part in the subsequently outlined errors 

of relative agreement, for which a brief outline has been included here. Essentially, 

covariance measures how much two random variables change together. The covariance for 

ƛҐмΧn and n, the number of measurements (or sample size), is defined as 

 

 ὅέὺὼȟώ
В ὼ ὼ ώ ώ

ὲ
ȟ (6.2-17) 

 

where ὼӶ is the mean of all xi, ώ is the mean of all yi .  
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It is an absolute measure in the sense that the values are not standardized, and are 

dependent on the chosen scale.  When the xi and yi vary independently, the separate 

parameters ώ ώ and ὼ ὼ may be independently positive or negative. This can 

potentially result in their mutual cancelation, and therefore a very low covariance value. In 

contrast, a high dependency of the dataset would cause correspondence in 

positivity/negativity, thus increasing the final covariance value.  

 

6.2.3 Measures of Relative Agreement   

 

In many cases, information pertaining to the nature of the association between two 

variables, and not solely the nature of their dissimilarity is required. To extract such 

information, we use measures of relative agreement, assessed using correlation statistics. 

Relative agreement refers to the potential existence and strength of an association between 

two variables.  Outlined here are two correlation measures which serve to convey 

information about such associations - The Pearson Product-moment Correlation Coefficient 

(r), used when the variable datasets are parametric in nature, the Spearman Rank 

Correlation Coefficient (rs), for those datasets which are non-parametric in nature. 

 

6.2.3.1 Pearson Product-moment Correlation Coefficient (r) 

 

A dimensionless covariance, the Pearson correlation coefficient (r), is retrieved by a division 

of the covariance by the two standard deviations stdev (x) and stdev (y): 

 

 ὶ
ὅέὺὼȟώ

ίὸὨὩὺὼίὸὨὩὺώ
ὅέὺὼᶻȟώᶻȟ (6.2-18) 

 

where x*  and y* represents respectively the standard normal random variable for which the 

ὼz π and stdev (x*)=1. The same applies for y. This can be further expanded by 

incorporating the formula for Covariance (6.2.2.1.c), and the definition of standard deviation 

for variables xi and yi producing:  
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(6.2-19) 

 

where ὼӶ is the mean of xi and ώ is the mean of yi. The achieved r value can lie between 1 and 

-1 which indicate a perfect positive and perfect negative correlation respectively. A perfect 

positive correspondence is achieved if the variation in xi is fully explained by the variation in 

yi. r effectively provides a measure of how well the two datasets are associated in their 

phasing. 

 

To obtain a more meaningful interpretation of r ƛǘ ƛǎ ǳǎŜŦǳƭ ǘƻ ŎƻƳǇǳǘŜ ƛǘΩǎ ǎǉǳŀǊŜ (r2). 

Known as the coefficient of determination, this represents the proportion of the total 

variation in yi that can be attributed to the linear relationship with corresponding values in 

xi, and is expressed as  

 

 ὶ
В ώ ώ В ώ  ὼ

В ώ ώ
ȟ (6.2-20) 

 

where  and represents respectively the maximum likelihood estimate for the intercept 

and slope as computed between the pairs (xi, yi).  In a perfect correlation (where r= +1 or -1) 

a variation in one of the variables is exactly matched by a corresponding variation in the 

other. The parameter 1-r2 indicates the extent to which other factors (outside xi & yi) are 

influencing xi and yi. 

 

If the statistical significance of the correlation is known, r and r2 can quantify its strength. 

However, if   the significance is unknown, r or r2 are rather poor statistics to gauge this 

strength. Furthermore, as both r and r2 do not factor in the potential effects of x and y 

ŘŀǘŀǎŜǘΩǎ ƛƴŘƛǾƛŘǳŀƭ ŘƛǎǘǊƛōǳǘƛƻƴǎΣ ŎƻǊǊŜƭŀǘƛƻn comparison can be obstructed. To provide 

information addressing these issues, an additional auxiliary test must be performed to 

ascertain the significance level of r (or  r2).  

 

For small number of samples and for cases when data follow bi-normal or two-dimensional 

Gaussian distribution around their means, the following statistic 

 



 

Comprehensive Error Characterisation 
Report (CECR) 

Version 0.7 

Date 21 May 2012 

 

 

28 

 
ὸ ὶ

ὲ ς

ρ ὶ
ȟ 

(6.2-21) 

 

ƛǎ ŘƛǎǘǊƛōǳǘŜŘ ŀǇǇǊƻȄƛƳŀǘŜƭȅ ƭƛƪŜ ǘƘŜ {ǘǳŘŜƴǘΩǎ ǘ-distribution, in cases of zero correlation 

(r0=0) with n-2 degrees of freedom and n equal to the total number of measurements. Thus, 

as a final step, this null hypothesis is tested by comparing the t with t-table tail probabilities 

for an appropriate significance level. The measure is widely used in the analysis of soil 

moisture data (for example, Chen et al., 1997; Cost et al., 2004; Reichle et al., 2004), being 

applicable both spatially, and temporally, whilst an excellent overview of the measure and 

its variations has been compiled by Rogers & Nicewander (1988). 

6.2.3.2 Spearman Rank Correlation Coefficient (rs) 

 

When soil moisture data are non-normally distributed, nor is this achievable by 

transformation, the non-parametric rank correlation known as Spearman Rank Correlation 

Spearman Rank Correlation (rs) may be used (Vachaud et al., 1984; Cosh et al., 2004). This is 

also useful when assess the spatial stability of the soil moisture field (Cosh et al., 2004), and 

the temporal stability (Martínez-Fernández & Ceballos, 2003). The measure uses the ranks of 

the xi and yi variables in the place of the raw data values, which become the basic data used 

in the correlation test. rs is calculated using  the expression 

 

 ὶ ρ
φВὨ

ὲ ὲ
 (6.2-22) 

 

where n is the number of sample units, and d is the difference between ranks. Whilst rs 

provides a good indicator of whether the correlation is strong or weak, it must be checked 

against the set of known critical Spearman Rank Correlation Coefficient values. This 

ascertains the likelihood that the value obtained arose by chance in the sample of n units.  

 

 

6.3 R-Metrics   
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We discuss the R-Metric introduced by Crow and co-workers in several papers (Crow, 2007; 
Crow and Zhan, 2007; Crow et al., 2010), presenting the motivation for this approach, the 
data assimilation ideas behind this approach, the limitations of this approach and its input 
data needs. We set this approach in the context of other applications of data assimilation to 
evaluate observational and model information, and discuss future perspectives. 

 
6.3.1 Importance of evaluation of soil moisture observational information 
 
Soil moisture is a key variable for understanding the hydrological cycle (Severinatne et al., 
2010) and retrievals of this quantity from various observing platforms (e.g. ground-based and 
satellites) provide observational information that helps improve our understanding of soil 
moisture, including testing our understanding of the hydrological cycle as embodied in 
models. It is thus of interest to provide objective quantification of the value of soil moisture 
retrievals, in particular provide an objective estimate of: (i) the errors in the soil moisture 
retrieval; and (ii) the added value of the observational information compared to that 
provided by a model. Traditional methods for data evaluation are discussed in section 6.3.2. 
In section 6.3.3-6.3.4 we discuss data evaluation methods that use data assimilation 
concepts. 
 
6.3.2 Traditional methods for data evaluation 
 
Traditionally, land surface remote sensing products from satellites (e.g. soil moisture) have 
been evaluated using the direct intercomparison of retrieved quantities with ground-based 
measurements, presumed to be of higher accuracy than the satellite data (see, e.g., the 
discussion in Crow, 2007). A key issue in this intercomparison is taking account of the 
different spatio-temporal resolutions of the satellite and ground-based data. In particular, a 
mapping must be done from the point-scale ground-based observations to the spatial 
resolution ƻŦ ǘƘŜ ǎŀǘŜƭƭƛǘŜ ƛƴǎǘǊǳƳŜƴǘǎΦ ¢Ƙƛǎ ƛǎ ŎŀƭƭŜŘ άǳǇǎŎŀƭƛƴƎέΦ bƻǘǿƛǘƘǎǘŀƴŘƛƴƎ ǘƘŜ 
progress made in these activities, this traditional approach is still generally limited in space 
(owing to the extent of the network providing the ground-based data) and/or time (owing to 
the length of the field experiment providing the ground-based data). 
 
A broader view of the quantification of the value of remote sensing retrievals from satellite 
instruments requires that consideration be given on how the data will be used in higher-
order applications, in particular, in applications involving the assimilation of retrieval data 
into land surface models. For soil moisture products, a fundamental question is the added 
value retrievals provide to soil moisture estimates from a model. Data assimilation, by 
combining observational and model information, adds value to the former by filling in the 
observational gaps, and adds value to the latter by constraining it with observations (see, 
e.g., Lahoz et al., 2010). It is thus natural to use data assimilation concepts to investigate the 
added value provided by soil moisture satellite retrievals. We discuss this in section 6.3.3. 
 
6.3.3 Beyond traditional methods of data evaluation ς R-metric 
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Crow (2007) introduces the R-metric as a tool to quantify the value of soil moisture 
retrievals. The R-metric is based on the notion that an overestimate of the simulated error in 
rainfall would require removal of water and, vice versa, an underestimate of the simulated 
error in rainfall would require addition of water. The water quantity would generally be a 
function of soil moisture. Crow (2007) translates this notion into equations that provide 
predictions by using the Kalman Filter equations (e.g. Nichols, 2010), with the control 
variable (the variable updated in the model) being the antecedent precipitation index (API) 
and the assimilated variable being soil moisture (these are the observations input into the 
assimilation scheme). The Kalman Filter (KF) equations are: 
 

  (6.15) 

 
In the Kalman filter equations above, the first equation represents the forecast of the model 
fields xf from time-step n-1 to n (updating the previous analysis xa), while the second 
equation calculates the forecast error covariance Pf from the analysis error covariance Pa and 
the model error covariance Q. The third and fifth equations are the analysis steps, using the 
Kalman gain K defined by the fourth equation. Q and Pa are assumed to be uncorrelated (e.g. 
Bouttier and Courtier, 1999). For optimality all errors (R, observations; Pf, forecast; Q, model) 
must be uncorrelated. In the above equations the observation operator H and the model 
operator M are assumed linear; the Extended Kalman Filter (EKF) is an extension of the 
Kalman Filter where the observation and model operators are non-linear (see Nichols, 2010). 
The superscript T denotes the transpose of a matrix.  
 
The key relationship in the R-metric formulation is between the API and the soil moisture, 
and this is provided by the equation in the Kalman Filter suite that updates the model 
forecast to provide the analysis, the third equation above.  
 

  (6.16) 

 

In this equation, the API (after updating) is represented by xa; the API (before updating) is 
represented by xf; and the soil moisture is represented by y. In the Crow formulation the 



 

Comprehensive Error Characterisation 
Report (CECR) 

Version 0.7 

Date 21 May 2012 

 

 

31 

observation operator as applied on API (before updating) is calculated as a least squares 
regression line (slope b, intercept a) for the observed long-term relationship between API 

and soil moisture retrievals (represented by qRS), and is written: Hxf = a+bxf. The difference 
between the model forecast xf and the analysis xa (xa ς xf) is the increment and includes the 
difference between the observation assimilated and its model counterpart (y ς Hxf) ς this 
difference is called the innovation, and plays a key role in data assimilation (Talagrand, 2010). 

In the formulation of Crow, the innovation is written: qRS ς a ς bAPI-, where API- is the API 
before updating (this is xf in the Kalman Filter equations above). In the Crow (2007) 
formulation xa is API+ (API after updating). In Crow and Zhan (2007), a number of steps are 
outlined for optimizing the error in soil moisture (R) and the model error (Q) such that the 
time series of the innovations are serially uncorrelated and has a second moment equal to 1. 
 
Translating the third equation in the Kalman Filter suite of equations into the R-metric 
formulation of Crow, a rainfall error overestimate is associated with a negative increment and 
a rainfall error underestimate is associated with a positive increment ς in both cases, one 
expects a negative correlation between these quantities (rainfall error and the increment). 
The rainfall errors are calculated as the difference between currently available global 
precipitation products from satellites and higher quality rain gauge products available only in 
data-rich areas of the globe. 
 
The R-metric introduced by Crow (Rvalue) thus considers the negative correlation (R) between 
the bias in the rainfall error and the increment, and is defined as the negative of this 
correlation, Rvalue = -R. The central hypothesis of the R-metric method is that the magnitude 
of the negative correlation R can be used as a proxy for the overall information content of 
remotely sensed surface soil moisture in global land surface modelling applications. 
 
The R-metric approach needs the following inputs: 

¶ Soil moisture retrieval from a satellite; 

¶ Rainfall data from one or more satellites ς these data are commonly used to drive a 
land surface model for API (see below); 

¶ Long-term, preferably multi-year, rainfall data from a network of rain gauges ς these 
data are commonly used as a benchmark to assess rainfall errors; 

¶ A land surface model, e.g., for API. For example, one could define a simple 

relationship for the API for day i as follows: APIi = gAPIi-1 + Pi, where Pi is satellite-

based precipitation and g is the API loss coefficient (see eq. (1) in Crow, 2007).   
 
In the context of the data evaluation element of the ESA-CCI for soil moisture, the following 
datasets could be used with the R-metric approach to evaluate the satellite soil moisture 
datasets involved in the round-robin (ESA-CCI soil moisture proposal, part 3, 2011): 

¶ Soil moisture retrievals from ASCAT (2007-2010) and AMSR-E (various publicly 
available datasets; 2007-2011) ς these will be used in the round robin exercise; 

¶ Precipitation datasets from one or more of: (i) GPCP-1DD (1o latitude-longitude daily 
Global Precipitation Climatology Project) data (Huffman et al., 2001) version V2 
(available 1979-present; http://www.gewex.org/gpcpdata.htm); (ii) GPCC (Global 
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Precipitation Climatology Centre) Full Data Reanalysis Version 5 (time series 1901-
2009) (see Rudolf and Schneider, 2005; (iii) CMORPH (NOAA CPC Morphing 
Technique) data from Dec 2002 to the present 
(http://www.cpc.ncep.noaa.gov/products/janowiak/cmorph_description.html; Joyce 
et al., 2004). The error in these precipitation datasets would have to be estimated; 
this could be done using a more accurate rainfall product, e.g., from global rain gauge 
data quality-controlled and archived by the GPCC in Germany (http://www-

das.uwyo.edu/~geerts/cwx/notes/chap10/rain_gauge.html).   
 
The R-metric approach is tested in Crow (2007) using a synthetic twin experiment (see, e.g., 
Reichle et al., 2002, for a discussion of twin experiments in data assimilation) ς this test 
establishes that the Rvalue metric is a well-defined function of both the underlying accuracy of 
soil moisture retrievals and the quality of rainfall observations used to calculate model-based 
soil moisture estimates. As discussed in Crow (2007), this interpretation is not affected by 
errors in benchmarking the rainfall information, temporal gaps in soil moisture retrievals or 
errors in model parameters. 
 
In Crow (2007) the R-metric approach is tested for real datasets concerning the added value 
of various remote sensing soil moisture products for land surface modelling applications. 
Results show that even retrievals from non-optimal sensors significantly enhance the quality 
of soil moisture predictions derived from a simple water balance model and a spaceborne 
ǇǊŜŎƛǇƛǘŀǘƛƻƴ ŘŀǘŀǎŜǘΦ .ŜŎŀǳǎŜ ƻǾŜǊ ŀ ƭŀǊƎŜ ŦǊŀŎǘƛƻƴ ƻŦ ǘƘŜ 9ŀǊǘƘΩǎ ǎǳǊŦŀŎŜ ǎǳŎƘ ǎŀǘŜƭƭƛǘŜ-based 
precipitation datasets provide the only available source of rainfall data, this result offers 
strong support for the added utility of spaceborne soil moisture observations for soil 
moisture monitoring in regions with poor ground-based precipitation coverage. The results in 
Crow (2007) also provide valuable information toward the design of spaceborne soil 
moisture retrieval strategies, for example, regarding polarization. To summarize, the results 
in Crow (2007) show that Rvalue provides an effective proxy for the accuracy of soil moisture 
retrievals. These results also show that as the accuracy of satellite-based global rainfall 
products increases, it becomes increasingly difficult to contribute added value to model-
predicted soil moisture. Finally, larger Rvalue coefficients can be interpreted as reflecting 
higher accuracy in soil moisture retrievals and greater value for land surface modelling 
applications. The information provided by the Rvalue coefficient can thus be used to optimize 
soil moisture retrievals. 
 
The positive results reported in Crow (2007) have two caveats: (i) The results presented on 
Rvalue are based on a very simple API land surface model; (ii) The approach is intended to 
complement, not replace, traditional validation techniques based on using soil moisture 
ground-based networks to evaluate remotely sensed (i.e., satellite) soil moisture 
observations (see section 6.3.2). Addressing the first caveat by using a physically more 
realistic land surface model would allow consideration of a wider range of model errors, and 
not simply the impact of precipitation uncertainty. However, increased modelling complexity 
also brings increased ambiguity regarding the interpretation of the data assimilation results, 
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a need for a more complex data assimilation approach and, ultimately, increased technical 
difficulties for adoption of the R-metric method by users. 
 
Improvements in the approach described in Crow (2007) have been implemented in two 
papers by Crow and Zhan (2007) and Crow et al. (2010). In Crow and Zhan (2007), the 
approach is extended geographically from limited domains over the continental USA to the 
entire continental USA, and extended in sensor type by considering microwave 
scatterometer and thermal remote sensing, and passive microwave radiometry. In Crow et al. 
(2010) the approach of Crow (2007) is applied with two changes: (i) anomalies instead of 
absolute values are considered; and (ii) a Rauch-Tung-Striebel (RTS) filter (Rauch et al., 1965) 
is applied instead of the Kalman Filter. This approach is applied on anomalies of precipitation 
and soil moisture, and follows the notion that for many land data assimilation applications, a 
more important reflection of the value of soil moisture observational information is skill with 
regard to detecting soil moisture anomalies relative to the annual cycle. The use of the RTS 
filter takes account of the non-real-time nature of the Rvalue methodology (i.e., we are not 
interested in short-term forecasts as in Numerical Weather Prediction), and the advantages 
of implementing a smoothing technique (as is the case for the RTS filter, but is not for the KF) 
in which model predictions are updated by both past and future observations. 
 
As emphasized in Crow et al. (2010), the Rvalue approach is intended to supplement, and not 
replace, more traditional soil moisture evaluation activities based on ground-based soil 
moisture networks. As noted in Crow (2007), the Rvalue metric is blind to bias and/or dynamic 
range errors and provides only a measure of skill with regard to change detection. While such 
change detection is often cited as the key contribution of remotely sensed soil moisture for 
many data assimilation activities (see, e.g., Crow et al., 2005; Reichle et al., 2008), it is not 
the only metric by which soil moisture products should be evaluated. In particular, bias and 
root-mean-square error (RMSE) calculations must be made versus ground-based 
observations or through the implementation of an alternative technique designed to recover 
RMSE information. Finally, the Rvalue metric is best interpreted as a measure of added skill, 
sensitive to both the accuracy of a soil moisture product and the accuracy of a rainfall 
estimate driving a model-based estimate of soil moisture.  This fits in with the notion that 
measuring the added value of remotely sensed observations relative to a reference piece of 
information is important for assessing the higher-level value associated with an assimilated 
soil moisture product. 
 
Recently, Parinussa et al. (2011) cross-verified Rvalue evaluation results with those of the 
Triple Collocation (TC) verification technique (see, e.g., Dorigo et al., 2010, for its application 
to soil moisture observations). Essentially, Rvalue and TC should contain the same information 
if both evaluation procedures are operating correctly (Entekhabi et al., 2010). Parinussa et 
al. (2011) compared both performance metrics on a global scale taking every single 
terrestrial climate system into account, and showed that Rvalue and TC are strongly correlated 
(R2=0.90). The high mutual consistency between TC and Rvalue was shown to break down at 
extreme vegetation levels such as deserts and rainforest. This breakdown was due to a lack 
of variation in the Rvalue suggesting that Rvalue may saturate at extreme conditions. Desert 
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areas have only few precipitation events, and for these conditions the Rvalue verification 
technique is likely to require sampling across a large number of such events and may, 
therefore, lose sensitivity in very arid climate regions. For heavily vegetated conditions (e.g. 
rainforest), the deviation could be explained by the fact that the soil moisture signal 
becomes almost entirely masked due to the overlying canopy. When these two extreme 
vegetation regions were masked the correlation coefficient between the two evaluation 
techniques was very high (R2 =0.95). This high level of consistency between the R-metric 
(Rvalue) and TC techniques lends confidence to their interpretation as robust evaluation 
metrics for soil moisture retrievals. 
 
6.3.4 Beyond traditional methods of data evaluation ς άǘǊŀƴǎŦŜǊ ǎǘŀƴŘŀǊŘέ 
 
One notion in evaluation of observations is that of a coincidence criterion, namely, that 
independent observations separated by a predetermined distance in space (typically within 
the order of 300 km) and time (typically within the order of 3 hours) can be considered 
coincident to the observation being evaluated (These coincidence criteria are introduced for 
illustration and mainly apply for evaluation of observations of atmospheric chemical 
species.). This approach implicitly assumes that the observation under evaluation does not 
vary significantly (compared to the error being estimated) over the spatio-temporal 
resolution of the coincidence criteria. A recent illustrative example is provided in the work of 
Cortesi et al. (2007) in their evaluation of MIPAS ozone data against HALOE observations for 
the period July 2002 ς March 2004. They use coincidence criteria of 300 km and 3 hours, to 
give a total of 141 profile pairs for comparison. 
 
In atmospheric chemistry, data assimilation is used to evaluate observations of chemical 
species. The application of the methodology allows comparison of two observations taking 
account of the spatio-temporal differences between them, and the errors of the observation 
being evaluated. Data assimilation accomplishes this by providing an analysis (with an 
associated error, estimated explicitly or implicitly depending on the data assimilation 
algorithm) which allows mapping of the observation being evaluated to the location and 
time of the observation being used for evaluation. This procedure is commonly termed a 
άǘǊŀƴǎŦŜǊ ǎǘŀƴŘŀǊŘέΦ 
 
Briefly, assimilation of observations Oi at locations (xi,yi,zi,ti) produces an analysis A=A(x,y,z,t). 
Observation Oi is to be evaluated by comparison against observation Pk at location 
(xk,yk,zk,tk).  This is accomplished by forming the difference Ak-Pk, where the analysed value 
Ak=A(xk,yk,zk,tk) is interpreted as a mapping of observation Oi to the spatio-temporal location 
of Pk. This mapping can take account (in principle) of the physics and chemistry governing the 
behaviour of observations O and their errors. This can be generalized to a comparison over a 
region R and a period of time T by forming an average over R and T of the difference (O-A) ς 
(P-A) = O-P, where O are the observations under evaluation, P the independent observations, 
ŀƴŘ ! ǘƘŜ ŀƴŀƭȅǎƛǎ ŀŎǘƛƴƎ ŀǎ ŀ άǘǊŀƴǎŦŜǊ ǎǘŀƴŘŀǊŘέΣ ŀƴŘ ǿƘƛŎƘ Ŏŀƴ ōŜ ƎŜƴŜǊŀǘŜŘ ƛƴ ŀ ƴǳƳōŜǊ 
of ways, including assimilation of observations O. Note that what is calculated over R and T 
are differences (O-A) and (P-A) separately; the overall difference between (O-A) and (P-A) is 
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calculated afterward. This gives an estimate for the difference between observations O and P 
over R and T, and an estimate of the bias in O (with respect to P, assumed to have well-
characterized errors). Examples of this approach are provided for MIPAS ozone by Geer et al. 
(2006) and Errera et al. (2008). Errera et al. (2008) compare the data assimilation approach 
to the coincidence criterion approach of Cortesi et al. (2007) ς see above, and show it 
provides a better estimate of the errors as it takes into account more independent 
observations. 
 
The transfer standard approach is now starting to be applied to evaluation of gravity wave 
information in observations of dynamical variables such as temperature (see Lahoz et al., 
2011). In principle, it could also be applied to evaluation of land surface observations, e.g., 
soil moisture. 
 
6.3.5 Conclusions 
 
Data assimilation provides the basis for evaluating observations of the Earth System, e.g., 
atmosphere and the land. It is increasingly being used to evaluate satellite observations of 
various elements of the Earth System, e.g., chemical species in the atmosphere. A particular 
application of data assimilation for evaluation of observations is the R-metric approach of 
Crow. It is based on the notion that an overestimate of the simulated error in rainfall would 
require removal of water and, vice versa, an underestimate of the simulated error in rainfall 
would require addition of water. The water quantity would generally be a function of soil 
moisture. The approach of Crow uses the Kalman Filter equations to translate this notion into 
a formalism that can make predictions. Despite the caveats associated with the R-metric 
approach, it is of benefit for evaluation of remotely sensed observations of soil moisture 
because: (i) it complements traditional methods of evaluation; and (ii) it provides a basis to 
evaluate remotely sensed (i.e., satellite) soil moisture observations over the globe, regardless 
of the density of the soil moisture ground-based network (traditionally used to evaluate 
satellite retrievals of soil moisture).  

6.4 Triple Collocation  

6.4.1 Theoretical overview 

The validation of soil moisture products is intrinsically limited by the lack of knowledge of 
ǘƘŜ άǘǊǳǘƘέΥ ǘƘŜ ŀŎǘǳŀƭ ǾŀƭǳŜ ƻŦ ǘƘŜ ǇŀǊŀƳŜǘŜǊ ǘƻ ōŜ ŘŜǘŜǊƳƛƴŜŘ ƛǎ ƴŜǾŜǊ ƪƴƻǿƴ ǿƛǘƘ 
absolute certainty, and spatial as well as temporal mismatch often exert a confounding 
influence. The triple collocation techniǉǳŜ ŘƻŜǎ ƴƻǘ ǊŜǉǳƛǊŜ ǘƘŜ ǎǇŜŎƛŦƛŎŀǘƛƻƴ ƻŦ ŀ άǘǊǳŜέ 
reference data set and permits the estimation of the error variance of each sensor provided 
certain assumptions about the error structure are met (Zwieback et al., 2012).(Zwieback, 
Scipal et al. 2012)(Zwieback, Scipal et al. 2012) Its popularity has grown considerably over 
the last decade. The method was introduced by Stoffelen (1998) in order to study the error 
characteristics of wind vector data derived from a model, buoy measurements and 
scatterometer observations. Further oceanographic studies pertaining to wind speed, wave 
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height or sea surface temperature measurements include Caires and Sterl (2003), Janssen et 
al. (2007) and (O'Carroll, Eyre et al. 2008). Recently, the triple collocation technique has 
been used in several studies to assess the quality soil moisture estimates from models, in-
situ data and remote sensing products (e.g. Dorigo et al., 2010; Loew and Schlenz, 2011; 
Miralles et al., 2010; Parinussa et al., 2011; Scipal et al., 2008). 

The triple collocation technique assumes that there are three independent sets of 
measurements describing the same phenomenon, in our case variations in soil moisture over 

a specific location. In addition, we assume soil moisture measured by sensor m at time t ( t

mq ) 

is linked to unknown true soil moisture tq by an additive bias term h and a multiplicative 

bias term ̡  together with a random error e: 

 

 eqbaq +Ö+= tt

meas  (6.17) 

 

The aim of the triple collocation technique is to provide an estimate of the variance of e. The 
assumptions regarding the statistical characteristics of the error terms are crucial for the 
validity of the collocation technique, so we presuppose that: 

1. The correlations between the errors of different sources at the same time step are 0, 
i.e. zero cross correlation,  

2. The correlations between errors at different time steps of the same data set are 0, 
i.e. zero autocorrelation,  

3. The three datasets exhibit a linear relationship. 

To meet these conditions, we can use three independent data sources describing soil 
moisture, e.g. a radiometer-based, a scatterometer-based, a TIR based and a model or in-
situ dataset. The three datasets are linked to the true soil moisture in the following way: 

 
1111 eqbaq +Ö+=   (6.18) 

 
2222 eqbaq +Ö+=  (6.19) 

 
3333 eqbaq +Ö+=  (6.20) 

In a second step, one of the datasets is defined as the reference dataset. The other datasets 
can be transformed into the data space of the reference dataset using, e.g. a linear 
regression method or CDF-matching. 

 
11 eqq +Ö=  (6.21) 

 *

2

*

2 eqq +=  (6.22) 

 *

3

*

3 eqq +=        (6.23) 
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¢ƘŜ ŦƛǘǘƛƴƎ ǇŀǊŀƳŜǘŜǊǎ ʰ1Σ ʲ1Σ ʰ2 ŀƴŘ ʲ2 only represent the additive and multiplicative bias 
between the particular dataset and the reference dataset. The random errors are still the 
true errors but also expressed in the data space of the reference dataset. As the 
ƳǳƭǘƛǇƭƛŎŀǘƛǾŜ ōƛŀǎŜǎ ʲ are known, an inverse transformation back into the data space of the 
particular datasets would be possible, but a reasonable comparison of the errors requires 
them to stay in the same data space. 

Assumed that the assumptions of uncorrelated errors are fulfilled, the random error can 
then be calculated by cross-multiplying the values and taking the average of an appropriate 
number of samples: 

 *

21

*

21 qqee -=-  (6.26) 

 *

31

*

31 qqee -=-  (6.27) 

 *

3

*

2

*

3

*

2 qqee -=-  (6.28) 
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21

2

1 qqqqe --=  (6.29) 

 ( )( )*3

*

2

*

21

2*

2 qqqqe --=  (6.30) 

 ( )( )*3

*

2

*

31

2*

3 qqqqe --=  (6.31) 

 

In order to meet the statistical requirements, a sufficiently large number of observations is 
crucial. Zwieback et al. (2012) showed that for a relative uncertainty of 10% (i.e. the 
standard error relative to the quantity of interest) 500 samples are needed (Fehler! 
Verweisquelle konnte nicht gefunden werden..1). This is a limiting factor for most earth 
observation data where time series are commonly shorter. Therefore, several authors 
adopted a pragmatic threshold of 100 observations (e.g. Dorigo et al., 2010; 
Scipal et al., 2008).  
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Figure 6.1. Estimated variance as function of the number of samples N, based on a synthetic dataset. The solid 
lines indicate the ±2 SE range around the actual value (Zwieback, Scipal et al. 2012).  

 

6.4.2 Application and i nterpretation of output  

Result of the triple collocation is an estimate of the error variance. Thus, the results do not 
provide information on the absolute deviations as expressed by bias and RMSD. It was stated 
ŀōƻǾŜ ǘƘŀǘ ƛƴ ŀōǎŜƴŎŜ ƻŦ ǘƘŜ ǊŜŀƭ άǘǊǳǘƘέ ƻƴŜ ƻŦ ǘƘŜ ǘƘǊŜŜ ŘŀǘŀǎŜǘǎ ƛǎ ŎƘƻǎŜƴ ŀǎ ŀ ǊŜŦŜǊŜƴŎŜ 
to which the other datasets are rescaled. Hence, errors of all datasets are expressed in the 
dynamic range of the reference dataset. The choice of the reference dataset affects the 
absolute values (and in some cases the unit) of the errors but does not influence the relative 
magnitudes of the datasets with respect to each other.  

The triple collocation can be applied either to the original retrieved soil moisture values (e.g. 
Scipal, Holmes et al. 2008) or to the anomalies from the long-term predicted values 
(seasonalities) (e.g. Dorigo, Scipal et al. 2010). While using original values provides 
information on the capability of the soil moisture products in representing general temporal 
patterns of soil wetting and drying, the anomaly-based approach gives us more accurate 
information on the ability of the different datasets to capture single events of drying and 
wetting (e.g. due to rainfall). As a consequence, the anomaly-based approach tells us less 
about absolute deviations between datasets, e.g. like induced by a deviating seasonality. 

Obviously, it is critical to compare the coarse scale land surface model and remotely sensed 
data with point wise in-situ measurements as the obtained errors will also contain scaling 
errors (Miralles, Crow et al. 2010). Furthermore the three datasets may show different 
temporal sampling intervals. Hence, errors may slightly inflate due temporal collocation 
discrepancies. Spatial divergences may also occur in a vertical direction as measurements 
represent different sampling layers 
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7 Errors of Active Microwave Retrievals  

7.1 Error Propagation   

The goal of WARP error modelling is to provide with each soil moisture estimate an error or 
noise estimate.  The WARP error model is based on the propagation of the initial noise 
estimate, the so called ESD, along the backscatter measurements through the processing 
chain, which will also give error estimates for all parameters and intermediate products that 
are required in order to compute the final soil moisture product. One exception is the 
estimate of the noise of the slope and curvature parameters, which is obtained not by error 
propagation, but by employing a Monte Carlo approach. 

In the following, we will use the terms error and noise interchangeably. The error is normally 
expressed as the error variance of the error distribution; the ESD, however, is reported as 
standard deviation. 

7.1.1 Interpolation Noise  

WARP processing starts with interpolating (also referred to as resampling) the relevant L1-
data (such as backscatter, incidence and azimuth angle) from the orbit grid to the WARP 
discrete global grid (DGG). By replacing L1 attributes of a point by weighted averages of the 
corresponding attributes of its neighbours, interpolation will introduce an error that will 
depend on the speed at which these attributes change relative to the spacing of the original 
measurements in the orbit grid.  At the moment, this error is not yet taken into account. 

7.1.2 Noise of Backscatter Measurements ESD 

This step initialises the error propagation in WARP. It estimates the random noise of a single 
beam measurement „ . This is based on the following observation: all three beams observe 
the same region at the same time, and the fore- and aft-beam have the same incidence 
angle. Thus, as long as there are no azimuthal effects, the measurements of the for- and aft-
beam are comparable, i.e., statistically speaking, they are instances of the same distribution. 
Hence, the expectation of the difference   

 ♯Ḋ Ɑ█▫► Ɑ╪█◄   (7.1) 

should be 0, and its variance should be twice the variance of one of the beams (assuming, 
the measurements are independent): 

 ○╪►♯  ○╪►Ɑ   (7.2) 

By taking the square root and re-arranging, this gives us an estimate of the standard 
deviation of „ , which is called estimated standard deviation (ESD) in WARP: 

 ╔╢╓▼◄▀Ɑ
▼◄▀♯

Ѝ
  (7.3) 

whereby ίὸὨ is obtained as empirical standard deviation of  over the whole time series. 
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7.1.3 Noise of Slope and Curvature 

The slope „ ὸ and curvature „ ὸ for each day t are among the most important 
scattering parameters in WARP. They are required to normalise the beam measurements by 
shifting them to a common reference angle of 40 degrees. 

Due to the analytical complexity of the interaction of the 3 beams which are combined in 
order to estimate the local slopes, and the way the time window length (which determines 
which measurements go in the sample for each daily estimate) is handled, a Monte Carlo 
approach is currently employed to estimate the noise of the slope and curvature 
parameters. That means that the parameters are determined for 50 datasets which are 
created from the original one by adding i.i.d. normal noise with standard deviation ESD to 
each backscatter measurement in the time-series.  The empirical variance of these 50 
parameter estimates for the slope is then used as estimate for the noise variance of the 
slope ὺὥὶ„ ὸ ; analogously for the noise variance of the curvature ὺὥὶ„ ὸ . 

See the ATBD ([RD-3]) for a detailed discussion of the slope/curvature estimation process. 

7.1.4 Noise of Normalised Backscatter 

Backscatter measurements taken at different incidence angles are not directly comparable. 
Having retrieved the slope and curvature parameters, we can invert the WARP model in 

order to compute from a backscatter measurement of beam i, „ —ȟὸ, taken at incidence 
angle — and day t, the corresponding backscatter value at the reference angle (40 degrees). 
Here, i is either the fore-, mid- or aft-beam. Letting 

 ● Ɑ░Ᵽ░ȟ◄ȟⱭ ◄ȟⱭ ◄
╣
 ,  (7.4) 

we have 

 Ɑ░ ȟ◄ █● Ɑ░Ᵽ░ȟ◄  Ɑ ◄Ᵽ░ Ɑ ◄Ᵽ░  (7.5) 

If we assume that the components of ● are uncorrelated, the covariance matrix of ● is 
simply 

 ═● ἓ ╔╢╓ȟ○╪►Ɑ ◄ȟ○╪►Ɑ ◄
╣

 (7.6) 

 

whereby I is the 3x3 unit matrix. 

The Jacobian of f is obtained as 

 
⸗█

ὀ
ȟ Ᵽ░ ȟ Ȣ Ᵽ░  (7.7) 

 

Thus, according to section Fehler! Verweisquelle konnte nicht gefunden werden., the 
variance of the normalised backscatter of the i-th beam is 

 ○╪►Ɑ░ ȟ◄ ╔╢╓ ○╪►Ɑ ◄ Ᵽ░ Ȣ  ○╪►Ɑ ◄ Ᵽ░   (7.8) 
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Finally, the three beams ς now having been shifted to a common reference angle ς are 
averaged: 

Ɑ ȟ◄ Ɑ█▫►▄ ȟ◄ Ɑ□░▀ ȟ◄ Ɑ╪█◄ ȟ◄   (7.9) 

 

The corresponding noise variance is given by 

○╪►Ɑ ȟ◄ ○╪►Ɑ█▫►▄ ȟ◄ ○╪►Ɑ□░▀ ȟ◄ ○╪►Ɑ╪█◄ ȟ◄   (7.10) 

 

7.1.5 Noise of Dry and Wet References 

The dry (wet) reference is computed by shifting the normalised backscatter values to the dry 
(wet) crossover angle, taking the average of the 2.5 % highest (lowest) measurements at the 
respective crossover angle, and shifting the average back to the reference angle at 40 
degrees (see the ATBD ([RD-3]) for details). In the following, we will discuss the error 
propagation for the dry reference; the wet reference case is handled analogously.  

We start be shifting the N normalised backscatter values of the time-series to the dry 
reference angle — . The noise variance of the j-th shifted measurement is computed 

analogously to the noise variance of of the normalised backscatter: 

ὺὥὶ„ τπȟὸ ὺὥὶ„ ὸ ὺὥὶ„ ὸ — τπ 

πȢςυ ὺὥὶ„ ὸ — τπ        (7.11) 

Note that the subscript (j) does not refer to the beam (the beams have already been 
averaged), but to the j-th normalised backscatter value. Next, the M = 0.025N highest of 
these values are averaged. Since they have different noise variances (depending on the day 
and incidence angle of acquisition), there exists no simple general expression for the noise 
variance of the average. If we assume that the measurements have been sorted in ascending 
order, the variance of the 0.025-tail-mean at —  is 

ὺὥὶ„ В ὺὥὶ„ —         (7.12) 

Finally, to obtain the dry reference for day t, the mean has to be shifted back to the 
reference angle at 40 degrees along the corresponding vegetation curve. This shift adds 
again to the noise variance: 

ὺὥὶ„ ὸ ὺὥὶ„ ὺὥὶ„ ὸ — τπ πȢςυ ὺὥὶ„ ὸ —

τπ        (7.13) 
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7.1.6 Noise of  Surface Soil Moisture 

The surface soil moisture SSM is defined as degree of saturation relative to the historically 
lowest and highest values at day t 

 SSM(t) = 
Ɑ ȟ◄  Ɑ

▀►◐
◄  

▼▄▪▼
 , ̀  (7.14) 

 

reported in percent, whereby the nominator   

▼▄▪▼ Ɑ◌▄◄◄  Ɑ
▀►◐
◄   (7.15) 

 

denotes the difference between wet and dry reference,  the so called sensitivity. 

By proceeding along the lines of the derivation of the noise of the i-th normalised beam, we 
obtain for the noise variance of the SSM 

ὺὥὶὛὛὓὸ

ὺὥὶ„ τπȟὸ

 ὺὥὶ„ ὸ
ȟ  

+ ὺὥὶ„ ὸ
ȟ  

 (7.16) 

 

 

7.2 Known Errors not Captured by Error Propagation  

The TU-Wien change detection model allows correcting/minimizing for certain unwanted 
measurement effects (e.g. vegetation, azimuthal anisotropy), as well as modelling the 
remaining uncertainty in the final result arising from this. However, there are significant 
constraints using scatterometer data for the retrieval of soil moisture, for example, if the 
fraction of open water, snow or frozen soil dominates the footprint. These particular cases, 
among others, are not explicitly covered in the error propagation and as a consequence the 
magnitude of their contribution to the overall uncertainty remains unknown. The following 
subsections will discuss the known errors not captured by the error propagation and how to 
cope with them with the help of advisory flags. 

7.2.1 Frozen ground 

The soil dielectric constant strongly decreases at temperatures below 0°C due to the inability 
of the soil water molecules to orient according to the external electromagnetic field. 
Experiments with dielectric measurements from soils in the 3 GHz to 37 GHz band 
between -50°C and 23°C for several soil types with distinct volumetric water content (5% and 
25%, respectively) showed, for example that silt loam at  -2°C has e¡ to be about 3.3 and 5.5 
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for the dry and wet samples  (Hallikainen 1984). Despite this small difference, it can be 
concluded that frozen soil shows similar backscatter characteristics as dry soil at microwave 
frequencies. However, in case of vegetation the effect of freezing is more complex, because 
of the different strategies of plants to avoid freezing. 

Although there have been a number of successful approaches in detecting freezing or 
freeze/thaw events based on microwave instruments (McDonald and Kimball 2006), a clear 
characterisation of the error made in case of soil moisture retrieval has not yet been 
described. Apart from the case where the whole illuminated area is covered by frozen 
ground and soil moisture retrieval cannot be performed at all, a fractional based approach 
might give a first estimate of the introduced uncertainty. However, to avoid these errors at 
the moment in the first place, backscatter measurements most likely effected by frozen 
conditions are excluded. But due to the imperfection of this process, which is based on 
temperature data, there still remain errors. In order to remove soil moisture estimates 
governed by frozen soil conditions afterwards, a frozen land surface flag based on a historic 
analysis of modelled climate data (ERA-40) (Uppala, KÅllberg et al. 2005) is part of the 
advisory flags. It gives the probability of frozen soil conditions for each day of the year. 

7.2.2 Snow 

Backscatter measurements from snow are often considered to consist of three parts: 
scattering from the top surface, the underlying surface and the volume scattering from 
within the snow pack. Additionally, also multiple scattering/reflection resulting from 
boundaries of the snow layer or from the snow volume are affecting the backscatter (Ulaby, 
Moore et al. 1986; Fung 1994). The dielectric properties determine the exact scattering 
behaviour, which, in turn, are controlled by the physical parameters of the snow layer (e.g. 
layer thickness, layer density, layer structure, snow grain size and shape, surface roughness, 
liquid water content). A snow layer can be classified into dry or wet, according to the 
amount of liquid water content. Directly associated with the wetness of the snow is the 
penetration depth of the signal. Under dry conditions the ground below the snow is acting as 
the major source of the backscatter as a consequence of a high penetration depth. On the 
contrary, surface scattering is the dominating part for wet snow, which means that surface 
roughness is important. As a result, wet snow with a smooth surface for example, might 
have a lower signal as a dry bare soil. If, however, the snow surface is rough then the 
backscatter is comparable to a wet bare soil. As a result, snow covered regions introduce 
errors in the soil moisture estimates due to their specific backscatter characteristics. The 
error propagation does not include these circumstances and soil moisture will be calculated 
nonetheless. Thus, additional information is needed whether snow was present or not. A 
snow advisory flag based on a historic analysis of SSM/I snow cover data (Nolin 1998), gives 
the probability of the occurrence of snow for every day within a year for a certain location. It 
enables the possibility to exclude soil moisture estimates given a certain probability 
threshold of snow cover.  
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7.2.3 Surface Waters and Water Bodies 

The surface roughness of open water is basically controlling backscatter characteristics in the 
microwave region. This is the result of a small penetration depth of the signal (< 1-2 mm) 
and a huge dielectric contrast between air and water. In case of a smooth surface, specular 
reflection leads to very low backscatter, which is typically the case for scatterometers due to 
their common viewing geometries. However, near surface winds are able to rough the water 
surface (i.e. generating water waves), which causes an increase of backscatter with a 
maximum if the radar looks into the upwind or downwind direction and lowest when it looks 
normal to the wind direction. Additionally, also vertically oriented features (like inundated 
vegetation or houses) can ensure a strong increase of backscatter due the so-called double 
bounce effect. As an example, Fehler! Verweisquelle konnte nicht gefunden werden. shows 
an ENVISAT ASAR backscatter scene with floods occurred due to heavy rainfall in 
Queensland, Australia from January 2011. Inundated regions are highlighted in red, meaning 
that almost no signal has been returned, whereas dark blue spots represent high backscatter 
from features exposed by double bouncing effects. 

All those previously mentioned conditions are steadily changing over time and therefore 
nearly impossible to control or model by the TU-Wien change detection algorithm. This 
means, if open water reaches a significant size in the footprint, backscatter measurements 
are tainted by the resulting effects and the estimation of surface soil moisture is no longer 
reliable. Although known lakes and wetland areas are excluded during the processing, grid 
points near areas prone to have temporal standing water, (ir-)regular flooding or near the 
coastline are possibly affected and the data needs to be treated with caution.  

An inundation and wetland flag derived from the Global Lakes and Wetlands Database 
(GLWD) (Lehner and Döll 2004) gives the fraction of water covered by the surface and thus, 
can be used as a first indication for susceptible areas. 

 

 

Figure 7.1: Flood in Queensland, Australia, January 2011. ENVISAT Advanced Synthetic Aperture (ASAR) Wide 
Swath Mode (150 m) (Doubkova M. 2012). 
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7.2.4 Dry soil backscatter  

The backscatter of a soil surface is primarily governed by the surface roughness and soil 
moisture content and, to a lesser extent, by soil type and volume scattering in the soil 
medium. It is usually assumed that, because of the penetration depth in wet soil is small, the 
inhomogeneities within the soil medium cause negligible amounts of volume scattering in 
comparison to scattering from the air-soil surface (Ulaby, Moore et al. 1982). However, if the 
soil profile dries out completely the contribution from deeper soil layers may not be 
inconsiderable any longer. This phenomenon has been particularly observed in very dry 
environments, where backscatter increases by 1-2 dB after the soil dries out completely. But 
also areas in Mediterranean climate show similar indications. The contribution from deeper 
soil layers in very dry climates is assumed to be related to volume scattering, as well as 
abrupt changes of the soil type (e.g. rocky bedrock). However, the precise extent of the 
respective impact and their interaction is not known. In case of the Mediterranean climate, 
first investigations point out that the sudden change from sandy soils to limestone might be 
linked to the increase of backscatter. This phenomenon is part of ongoing research and 
therefore not represented by the error propagation.  

7.2.5 Wet correction in arid environments  

Although it is very unlikely that a saturated soil condition has not been observed by the 
sensor, it can still be possible. This is mainly the case in very dry climates, where soil wetness 
does not ever reach to the saturation point. As a result the maximum backscatter does not 
correspond to saturated soil conditions and the soil moisture values are overestimated by a 
wrong upper limit (see Fehler! Verweisquelle konnte nicht gefunden werden.). In order to 
achieve an appropriate sensitivity (difference between minimum and maximum backscatter) 
in such regions, it is necessary to make use of a so-called wet correction. For the 
identification of those areas scatterometer measurements are not enough and therefore an 
external climate classification dataset will be used (Kottek, Grieser et al. 2006). The 
utilisation of the wet correction is done in two steps. First the lowest level of the wet 
reference is set to -10 dB globally and secondly, after identifying areas with predominantly 
dry and hot climate, the wet reference is raised again until the sensitivity reaches at least 
5 dB. However, this is just an approximation of the expected backscatter maximum at 
saturated soil conditions and thereby introduces errors which are not covered by the error 
propagation. As a result, soil moisture estimates from very dry environments, hardly 
reaching soil wetness saturation, require critical examination. 
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Figure 7.2: Simply due to the fact that saturated soil conditions in very dry climates are very unlikely to occur, 
the maximum backscatter does not always represent the wettest soil conditions. 

7.2.6 Long-term changes in Land Cover 

Land cover and roughness are assumed to be temporal invariant in the TU-Wien change 
detection model. This assumption is based on the argument that due to the couarse 
resolution of the scatterometer land cover changes are negligible and therefore seen as 
static. However, as soon as the data time series encompasses more than several years 
(> 5-7), long-term changes of land cover may become increasingly important. Particularly, 
urban growth and deforestation, but also other land cover changes may achieve a certain 
extent, which no longer should be disregarded, because it can cause a significant change in 
backscatter. Currently these effects are not yet accounted for and also not part of the error 
propagation. Therefore, additional knowledge of the underlying land cover type, as well as 
its changes is advantageous and recommended during investigating and analysing the soil 
moisture data. 

7.2.7 Topographic complexity  

A high variability of surface conditions in mountainous areas forms topographic complexity. 
Such regions have the potential to affect the backscatter signal, meaning that changes of the 
signal are not necessarily coupled with soil moisture changes in the first place. These 
diverging variations of the surface include rough terrain, permanent snow and ice cover, 
dense vegetation and rock cover. But also calibration errors resulting from the differences 
between the real surface and the assumed ellipsoid in the Level 1 processing belong to this 
category. The soil moisture uncertainty arising under these circumstances are not tied to the 
error propagation. Therefore, soil moisture estimates in affected areas need further 
investigation regarding their information content or can simply be masked out. 

A topographic complexity flag, which is derived from GTOPO30 data (U.S. Geological Survey 
1996) and also part of the advisory flags, provides a standard deviation of the elevation 
within the footprint, normalized between 0 and 100. It should give a preview on the 
underlying topographic conditions. 
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7.3 Triple Collocation  

(Dorigo, Scipal et al. 2010)) applied the triple collocation technique to soil moisture products 
from active- (ASCAT), passive (AMSR-E) microwave observations, and model-based soil 
moisture estimates (ERA-Interim). Generally, error estimates are lowest in arid regions 
(Figure 7.3) such as Southern Africa, mainland Australia, or Central Asia. This is explained by 
the very low amounts of precipitation received and hence the very low variability of soil 
moisture. The global picture would look different if relative instead of absolute errors were 
considered, as low errors in dry regions (low overall soil moisture content) have larger 
relative impact than in humid regions.  In densely vegetated areas errors are higher, induced 
by the increasing attenuation of photons by vegetation elements with increasing vegetation 
density. No feasible triple collocation results could be obtained for very dense vegetation 
(tropical forests, taiga) and areas with extreme topography.  

 

Figure 7.3: Spatial errors of ASCAT soil moisture estimates obtained with triple collocation. Errors are expressed 
in the dynamic range of ERA-Interim (Dorigo et al., 2010). 

7.4 Validation against In -Situ Measurements  

Soil moisture retrievals from active (ERS and ASCAT) and passive (e.g. TMI, AMSR-E, 
WindSat) microwave observations have been extensively validated against in situ data (e.g. 
Wagner et al., 2007; De Jeu et al., 2008; Gruhier et al., 2010; Brocca et al., 2011). In these 
validation studies a variety of statistics (e.g. R, R2, SE, RMSE, Bias) were used when 
comparing the different soil moisture products. Also, these validation studies were 
performed over a range of vegetation types and climate regions, however not all existing 
types and regions were covered. 

Wagner et al. (2007) performed a validation study in a semi-arid region located in the Duero 
basin in the central part of Spain. They compared soil moisture retrievals from ERS-SCAT and 
soil moisture retrievals from various algorithms applied to AMSR-E observations to in situ 
observations. Gruhier et al. (2009) performed similar analysis for several sites located in 
Mali, Niger and Benin, all in the Sahel region. A limitation in these studies is that global soil 
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moisture datasets were evaluated based on data from only one test site, representing a 
particular kind of soil and land cover. To overcome this limitation, Brocca et al. (2011) 
presented an inter-comparison and validation study of soil moisture estimations from the 
ASCAT and AMSR-E sensors across Europe. They used test sites from several ground based 
networks located throughout this continent, each having its unique soil texture, land use, 
rainfall- and temperature regime. Two different scaling strategies, based on linear regression 
and Cumulative Distribution Function (CDF) matching, were employed to remove systematic 
differences between satellite and site-specific soil moisture data. Table 7.X gives a summary 
of the results of the comparison between site-specific and satellite soil moisture for the 
ASCAT soil moisture product with the application of the CDF matching approach. 

 

Country 

 

Site 

 

Observation depth 

(cm) 

Correlation coefficient 

(R) 

Luxembourg BIB 5 0.64 

Spain K10 5 0.69 

Spain F11 5 0.65 

Spain I06 5 0.66 

France URG 5 0.79 

France LZC 5 0.81 

France PRG 5 0.72 

Italy VAL 10 0.71 

Italy CAP 10 0.75 

Italy BAG 30 0.75 

Italy MEL 30 0.65 

Italy TOR 30 0.74 

Italy CHI 30 0.71 

Spain VCE 20 0.44 

France VOB 30 0.55 

Table 7.1: Summary of the results of the comparison between satellite soil moisture from (ASCAT) and in situ 
observed data (Brocca et al., 2011). 

8 Errors of Passive Microwave Retrievals  

8.1 Error Propagation 

The dynamic errors of the passive microwave retrievals are calculated using error 
propagation. The error model is based on the propagation of the initial noise estimates 
through the processing chain. Due to the simplicity of the radiative transfer model it was 
possible to compute the Jacobian by using an analytical solution (Parinussa et al., 2011). 
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As given in the CCI ABTD document V0 the observed brightness temperatures could be 
described as  
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Where bT refers to the observed brightness temperatures, P refers to either horizontal (H) 

or vertical (V) polarization, 
ST and 

CT  are the thermometric temperatures of the soil and the 
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Based on these equations the the radiative transfer equation (8.1) was rewritten and an 
analytical solution of the quantitative uncertainty for passive microwave remote sensing of 
soil moisture product was derived. 

 
The basis of the analytical solution to calculate the error in the soil moisture product lies in 

the use of the error propagation methodology (8.3) presented in most statistical textbooks; 
for example the function ,...),( vufx= . 
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The methodology is adapted here to determine the variance 2

ks  of the dielectric constant 

(k), using the variances of several input parameters. After the determination of the variance 
in the dielectric constant, a dielectric mixing model (Wang and Schmugge 1980) was used to 
calculate the uncertainty in soil moisture. The challenge in using the basic error propagation 
methodology (8.3) is to define the partial derivatives. 

To define the partial derivatives, we used the jacobian matrix (see. The jacobian matrix is a 
matrix containing the first order partial derivatives of the radiative transfer equation with 
respect to each variable. In our case the jacobian matrix (J, as given in Equation 6.3) can be 
described as (8.4) 
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After applying the land surface temperature assumption, one is able to rewrite the 

radiative transfer equation (8.1) after putting 
LST  outside brackets (8.5), for convenience we 

ŘǊƻǇ ǎǳōǎŎǊƛǇǘ ΨtΩ ŦƻǊ ǇƻƭŀǊƛȊŀǘƛƻƴΦ 
 

 [ ]GG---+G--+G= )1)(1)(1()1)(1( ww rrLSb eeTT   (8.5) 

 
This can be rewritten to (8.6) 

 
 [ ])1)(1())1)(1(( 2G--+GG---G= wwrLSb eTT  (8.6) 

 
For convenience we define the expressions ),( wGF  (8.7) and ),( wGG  (8.8) to rewrite 

equation (8.6), resulting in (8.9) 
 

 GG---G=G )1)(1(),( wwF  (8.7) 

 )1)(1(),( 2G--=G wwG  (8.8) 

 [ ]),(),(),( ww G+G= GhkeFTT rLSb
 (8.9) 

 
The rough surface emissivity 

)(Pre  follows from (8.10), wherein the horizontal (H) and 

vertical (V) polarization are reintroduced. This equation was written to calculate the rough 
surface emissivity in horizontal polarization. To calculate the rough surface emissivity at 
vertical polarization the (H) and (V) sign for polarization should be swapped. Q is the 
roughness parameter known as the cross polarization, h is the roughness and k refers to the 
dielectric constant. 
 

 [ ] )())(1)(1())(1(1),( )()()( hkeQkeQhke HsVsHr c--+--=   (8.10) 

 

 wherein the last term refers to (8.11) 
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The smooth surface emissivity was calculated using (8.12) and (8.13), for convenience we 
ŘǊƻǇ ǎǳōǎŎǊƛǇǘ ΨǎΩ ŦǊƻƳ ǎƳƻƻǘƘ ŜƳƛǎǎƛǾƛǘȅΦ 
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 wherein the D term refers to (8.14) 
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The following derivatives will be needed 
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 From these derivation it follows that the jacobian matrix (8.4) can be calculated 
analytically 
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 GFeJ Hr += ,13
 (8.23) 

 GFeJ Vr += ,23
 (8.24) 

 [ ]2,14 1)1( G+-GG-= HrLS eTJ  (8.25) 

 [ ]2,24 1)1( G+-GG-= VrLS eTJ  (8.26) 

 [ ] )cos()1)(1()1(15 ueQeQFTJ HVLS c--+-=  (8.27) 

 [ ] )cos()1)(1()1(25 ueQeQFTJ VHLS c--+-=  (8.28) 
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From LPRM, it follows that variations in the observed parameters
)(,, obsLSbVbH TTT Σ ˖estand 

esth are related to variations in the unknown model parameters
LSTk,,G Σ ˖ ŀƴŘh . Combining 

this with the inverse jacobian matrix results in the following expression (8.29) 
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The second line in this equation holds the result (8.30) 
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Herein, the correlation between the errors in 

bHT  and 
bVT  is expressed in r. 

 

Error propagation and/or sensitivity analyses illustrate the error or sensitivity of the 
retrieved values relative to the uncertainty of the input parameters. Some input parameters, 
like brightness temperature observations have well-defined values for their accuracy, while 
for others one can only provide an estimate.  

AMSR-E sensor sensitivity is a well known value. For C-band brightness temperature 
observations it is 0.3 K and for the other relevant for soil moisture retrieval frequency bands 
(X- and Ku-band) it is 0.6 K (NSIDC 2006). The land surface temperature algorithm was 
extensively validated (Parinussa, de Jeu et al. 2008; Holmes, De Jeu et al. 2009) Recent 
reanalysis of this algorithm resulted in uncertainty values varying between 2.5 K for non- to 
low-vegetated areas to 1.8 K for high-vegetated areas for AMSR-E night time observations 
only. These values include the AMSR-E sensor sensitivity of 0.6 K. 

Other input parameters do not have well defined values for their accuracy because it is 
often difficult to derive a reliable estimate. Limitations on measuring techniques, high spatial 
and temporal variability, and problems due to up-scaling of parameters may all contribute to 
this uncertainty. 
In LPRM fixed values of the single scattering albedo and roughness parameters (i.e. h and Q) 
are used. Recent studies demonstrate an improvement of understanding of the dynamic 
nature of these parameters (Schneeberger, C. Stamm et al. 2004; Wigneron, Y. Kerr et al. 
2007). However the impact and implementation of these findings at satellite scale is still 
under development. 
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LPRM uses the porosity and wilting point maps from GLDAS. The uncertainty of these soil 
properties at a global scale are, mostly due to upscaling processes, to a large degree 
unknown. 
 

8.2 Known Errors not Captured by Error Propagation  

The dynamic errors of the passive microwave retrievals are calculated using a standard error 
propagation approach as described previously. This error model is based on the estimation 
of the uncertainty of all input parameters and propagated these uncertainties to the soil 
moisture output. This approach allows the estimation of uncertainty in both time and space, 
and could be used for masking purposes. However the standard error propagation approach 
filters many soil moisture retrievals of low quality, there are still significant constraints such 
as frozen soil, radio frequency interference and active precipitation events. These particular 
cases, among others, are not explicitly covered in the standard error propagation approach 
and as a consequence additional masking routines need to be applied. The following 
subsection will discuss the known errors not captured by the error propagation and how to 
cope with them with the help of advisory flags. 
 
The LPRM allows for simultaneous observations of the thermodynamic temperature (Holmes 
et al., 2009), areas with snow cover or frozen surface conditions can be detected and flagged 
accordingly using this method. In areas with excessive vegetation, the soil emission is 
completely attenuated by the canopy and this tends to saturate the microwave signal with 
increasing optical depth. As a result the sensor sensitivity to variations in soil moisture 
decreases. When the vegetation density is too high, LPRM will either not achieve 
convergence or these pixels can be assigned an appropriate data flag based on 
simultaneously retrieved vegetation optical depth. The natural microwave emission may be 
interfered by man-made radio signals, so called Radio Frequency Interference (RFI). 
Continuously LPRM is testing for RFI by calculating the RFI index as defined by (Li et al. 2004). 
In the event of extreme RFI, LPRM will assign an appropriate data flag to these pixels. Finally, 
natural microwave emission of the soil may be disturbed by active precipitation events. 
Using the multi-frequency nature of the AMSR-E sensor, such events can be screened and 
filtered. Several algorithms for the detection of active precipitation exist and a detailed 
overview of these methods was given by Seto et al. (2008). 
 

8.3 Triple Collocation  

As shown previously (section 7.3), (Dorigo, Scipal et al. 2010) applied the triple collocation 
technique to soil moisture products from active microwave observations (ASCAT), passive 
microwave (AMSR-E), and model-based soil moisture estimates (ERA-Interim). The general 
global patterns, which were linked to various climate regions, remain similar for the ASCAT 
and AMSR-E error estimates (Figure 8.1). 
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Figure 8.1: Spatial errors of AMSR-E C-band soil moisture estimates obtained with triple collocation. Errors are 
expressed in the dynamic range of GLDAS-Noah (Dorigo et al., 2010). 

Despite the similar average errors of both datasets, several differences in the spatial 
distribution of the errors can be observed between the datasets (Fig. 7.3ς8.1). In very dry 
areas (e.g. Sahara, central Australia) error estimates derived for AMSR-E Cςband are 
remarkably lower than error estimates derived for ASCAT. In these regions the AMSR-E 
observations are hardly disturbed by vegetation which explains the low error estimates. The 
relatively high errors obtained for scatterometer data in these areas are a well-known 
phenomenon believed to be related to volume scattering effects in dry, loose sand and the 
systematic orientation of sand ripples and dunes over large areas leading to systematic 
influence of the azimuth viewing direction (Bartalis et al., 2006). 

On the other hand, soil moisture derived from AMSR-E is prone to larger random errors in 
moderately to densely vegetated areas, like for instance found in south-eastern North 
America and northern Argentina. Vegetation affects passive microwave observations from 
above the canopy in two ways. First, vegetation will absorb or scatter the radiation 
emanating from the soil. Secondly, also the vegetation canopy itself emits radiation. These 
two effects tend to counteract each other. The observable soil emission will decrease with 
increased vegetation, while the emission from the vegetation canopy will increase. Under a 
sufficiently dense canopy, the emitted soil radiation will become totally masked, and the 
observed emissivity will be due largely to the vegetation (Owe et al., 2001). As similar 
vegetation interaction is expected for active microwave signals (Ulaby et al., 1982), it is 
suggested that the differences in errors over vegetation should be mainly attributed to the 
retrieval method. Recently, Crow et al. (2010b) pointed out that first order radiative transfer 
models are not able to accurately describe radiation attenuation in denser vegetation, 
especially for larger incidence angles. This finding would explain the shortcomings of LPRM, 
which is based on a simple linear radiative transfer model, in describing the higher order 
scattering that is very likely to occur in canopies with heavier vegetation cover. Hence, larger 
uncertainties in retrieved soil moisture would occur in these areas. In contrast, vegetation 
correction in the TU Wien algorithm is data-driven and therefore implicitly accounts for 
higher order scattering effects. And even though uncertainties in observed soil moisture 
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increase with increasing vegetation density, effects are not as pronounced as for LPRM. 
However, more research and model comparison is needed to verify this hypothesis. 

Figure 8.2 shows the areas for which either ASCAT (blue) or AMSR-E (red) gives the lowest 
triple collocation errors. Such a map can be useful for ranking the different products in an 
attempt to merge the datasets (Liu et al., 2010). Nevertheless, the resulting Boolean map 
should be taken with precaution as, especially in transition areas, errors may be very similar 
and none of the products should be excluded on beforehand. In areas where less than 100 
triplets are available (left blank in the image) it is expected that ASCAT would provide lower 
errors in moderately to densely vegetated areas while AMSR-E would show lower errors in 
dry areas. These assumptions could be used to fill the map in Figure 8.2 in order to obtain a 
complete global coverage. 

 

Figure 8.2Υ ¢ƘŜ ŀǊŜŀΩǎ ƛƴ ǿƘƛŎƘ ŜƛǘƘŜǊ !{/!¢ όōƭǳŜύ ƻǊ !a{w-E (red) shows the smallest error value (Dorigo et al., 
2010). White areas indicate places where less than 100 common observations are available. 

8.4 Validation against In -Situ Measurements  

As shown previously (section 7.4), soil moisture retrievals from active and passive  
microwave observations have been extensively validated against in situ data (e.g. Wagner et 
al., 2007; De Jeu et al., 2008; Gruhier et al., 2010; Brocca et al., 2011). A brief selection of the 
results from soil moisture retrievals from active microwave observations obtained by Brocca 
et al. (2011) were shown, these results were chosen because they evaluated the quality of 
remotely sensed soil moisture over a range of vegetation types and climate regions 
throughout Europe. 

In contrast with soil moisture retrievals from the ASCAT sensor, Brocca et al. (2011) used 
several (fundamentally different) retrieval algorithms to retrieve soil moisture from the 
passive microwave observations obtained by AMSR-E. The simplest algorithm used in this 
research was the Polarization Ratio Index (AMSR-E PRI), which uses the vertical and 
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horizontal polarization measurements, and is frequently used to describe soil moisture 
variations because at low frequency (<10 GHz) the main part of the microwave emission 
signal comes from soil moisture and soil temperature and the PRI allows filtering the effect 
of soil temperature. The second algorithm (Njoku & Chan 2006) is currently used for the 
official AMSR-E NASA soil moisture product and uses normalized polarization ratios of the 
AMSR-E. Vegetation and roughness are accounted for using the polarization ratios at 10.65 
and 18.7 GHz in empirical relationships. This AMSR-E NASA product is currently available 
through the archive of the National Snow and Ice data Center (NSIDC). The last algorithm 
used in their study was the three parameter retrieval model called the Land Parameter 
Retrieval Model (Owe et al., 2008; LPRM). The LPRM retrieves soil moisture, vegetation 
optical depth and soil/canopy temperature simultaneously from passive microwave data 
based on the optimization of a microwave radiative transfer model. Table 8.2 gives a 
summary of the results of the comparison between several soil moisture algorithms applied 
to AMSR-E passive microwave observations and in situ data with the application of the CDF 
matching approach. 

 

Country 

 

Site 

 

Observation depth 

(cm) 

AMSR-E LPRM 

(R) 

AMSR-E NASA 

 (R) 

AMSR-E PRI 

 (R) 

Luxembourg BIB 5 0.78 0.64 0.71 

Spain K10 5 0.69 0.55 0.68 

Spain F11 5 0.71 0.43 0.67 

Spain I06 5 0.66 0.50 0.70 

France URG 5 0.53 0.41 0.68 

France LZC 5 0.54 0.21 0.54 

France PRG 5 0.46 0.30 0.62 

Italy VAL 10 0.76 0.61 0.53 

Italy CAP 10 0.78 -0.13 0.63 

Italy BAG 30 0.81 -0.01 0.28 

Italy MEL 30 0.71 0.04 0.15 

Italy TOR 30 0.72 0.24 0.35 

Italy CHI 30 0.72 0.22 0.36 

Spain VCE 20 0.45 -0.03 0.52 

France VOB 30 0.61 -0.01 0.50 

Table 8.2: Summary of the results of the comparison between several soil moisture algorithms applied to AMSR-
E passive microwave observations and in situ observed data (Brocca et al., 2011). 
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9 Errors from Merging  

The ECV production system consists of three steps: 1) merging the original passive 
microwave products into a single product 2) merging the original active microwave products 
into a single product, and 3) blending the two merged products into one final dataset. At the 
one hand, errors and uncertainties of the original active and passive microwave input 
products need to be adequately propagated through the production system, at the other 
hand new uncertainties and errors arise from the ECV production system itself. This chapter 
aims at identifying these two types of errors, although research is still needed to accurately 
quantify them.  
For ECV production input data from various satellite sensors with different specifications are 
used. The ones included in the current product version are summarized in Table 9.1. 
Differences in microwave frequency, spatial resolution, overpass times and retrieval 
methods all potentially add uncertainties to the ECV.  

 

 

Passive microwave products Active microwave products 
Model 

product 

SMMR SSM/I TMI AMSR-E SCAT ASCAT 
GLDAS-1-

Noah 

Platform Nimbus 7 DMSP TRMM Aqua ERS MetOp --- 

Time period 
used 

Jan 1979 ς 
Aug 1987 

Sep 1987 ς  
Dec 2007 

Jan 1998 ς  
Dec 2008 

Jul 2002 ς  
Dec 2008 

Jul 1991 ς  
Dec 2006 

Jan 2007 ς  
Dec 2008 

Jan 2000 ς  
Dec 2008 

Channel used 
for soil 

moisture 
6.6 GHz 19.3 GHz 10.7 GHz 6.9/10.7 GHz 5.3 GHz 5.3 GHz --- 

Original spatial 
resolution* 

(km2) 
150×150 69 × 43 59 × 36 76 × 44 50 × 50 25 × 25 25 × 25 

Spatial 
coverage 

Global Global N40o to S40o Global Global Global Global 

Swath width 
(km) 

780 1400 
780/897 

after boost in 
Aug 2001 

1445 500 1100 (550×2) --- 

Equatorial 
crossing time 

Descending: 
0:00 

Descending: 
06:30 

Varies (non 
polar-

orbiting) 

Descending: 
01:30 

Descending: 
10:30 

Descending: 
09:30 

8 times/day 
(0:00 

Unit m3m-3 m3m-3 m3m-3 m3m-3 
Degree of 

saturation (%) 
Degree of 

saturation (%) 
kg m-2 

*For passive and active microwave instruments, this stands for the footprint spatial resolution. 

Table 9.1 Major characteristics of passive and active microwave instruments and model product. 

9.1 Interpolation Errors  

9.1.1 Temporal interpolation  

Table 9.2 and Table 9.3 summarize the temporal resolution and observation times of the 
input datasets. Given the heterogeneous observation times it was decided to set the 
reference time for the ECV data sets at 0:00 UTC. For each day, the observations within the 
reference time of 0:00 UTC ±12 hours are considered. If more than one observation falls 
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within this period, the observation closest in time is selected. This strategy results in data 
gaps when no observations within ±12 hours from the reference time are available. For the 
modelled soil moisture datasets no resampling is required.  

The observation selected for a specific dataset for a specific day is mitigated to the ECV 
production system without any temporal interpolation or resampling. Therefore, systems 
that make their observations close to the 0:00 UTC reference time are expected to be 
slightly more representative for the conditions at the reference time than the ones that are 
taken with a larger time lag. The user of the merged product should be aware of this. 

The AMSR-E soil moisture estimates based on night-time (descending mode) observations 
are in most situations more reliable than those obtained during the day (ascending mode). 
This is mainly caused by the complexity to derive accurate estimates of the effective surface 
temperature during the day. For this reason only night-time soil moisture observations from 
radiometers are used for the current version of the ECV product. 

 

Sensor SMMR SSM/I TMI AMSR-E 

Temp. 
Res.: 

~1-2 per week (depending 
on latitude) 

~1 per day (depending on 
latitude) 

~1-2 per day (depending 
on latitude) 

~1-2 per day 
(depending on latitude) 

Obs. 
Time: 

Solar Obs. Time 12:00  
(asc) 24:00 (desc) 

Variable 
platform dep. 

variable Solar Obs. Time: 13:30 
(asc) / 01:30 (desc) for 

Aqua 

Table 9.2 Temporal specifications of passive microwave sensors 

 

Sensor ERS-1/2 data ASCAT GLDAS 

Temp. 
Res.: 

~ 1-2 per week (depending on 
latitude) 

~ 4-5 per week (depending on 
latitude) 

8 per day 

Obs. Time: Solar Obs. Time 10:30 (asc) / 22:30 
(desc) 

Solar Obs Time 9:30 (asc)  21:30 
(desc) 

0:00, 3:00, 6:00, 9:00, 12:00, 
15:00, 18:00, 21:00 UTC 

Table 9.3 Temporal specifications of active microwave sensors and modelled products 

9.1.2 Spatial interpolation  

The final merged product is provided on a regular grid with a spatial resolution of 0.25 
degree. Table 9.4 and Table 9.5 show the spatial specifications of passive, active, and 
modelled products. Nearest neighbour resampling is performed to convert the various grid 
projections onto the common regular grid. Nearest neighbour search is based on the 
reference (regular) grid. For each regular grid point a nearest grid point within the input 
dataset is sought. This can lead to multiple assignments when different grid points in the 
reference data set are close to the same grid point of the input data. This most likely to 
occur in the pole regions, where the sampling distance of the regular grid strongly reduces. 
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This resampling effect emerges especially when resampling the ERS 1/2 and ASCAT level 2 
soil moisture products, as these input data use an equidistant grid (DGG).  

The uncertainties resulting from spatial resampling are mainly related to the distance of the 
original projection and  the spatial resolution of the input dataset.  

 

Sensor SMMR SSM/I TMI ASMR-E 

Original spatial 
resolution* (km

2
) 150×150 69 × 43 59 × 36 76 × 44 

Spatial Coverage Global Global N38
o
 to S38

o
 Global 

Projection / 
Resolution 

Orbit files 
sampling distance 

25 km 

Orbit files 
sampling distance 

25 km 

Orbit files 
sampling distance 

13.9 km (x dir) 
and 9.1 km (y dir) 

Orbit files 
sampling distance 

10 km 

Table 9.4 Spatial specification of passive microwave products 

 

Sensor ERS-1/2 data ASCAT GLDAS 

Original spatial resolution* 
(km

2
) 150×150 69 × 43 76 × 44 

Spatial Coverage Global Global Global 

Projection / Resolution WARP DGG / 
12.5km 

WARP DGG / 
12.5km 

Regular Grid / 
0.25° 

Table 9.5 Spatial specification of active microwave products 

9.2 Scaling  

Due to different observation frequencies, observation principles, and retrieval techniques, 
the contributing soil moisture datasets are available in different observation spaces. 
Therefore, before merging can take place at either level, the datasets need to be rescaled 
into a common climatology. The rescaling procedure is applied to the daily soil moisture 
values at three levels in the processing chain: 

1) Rescaling of all the passive microwave soil moisture observations to the climatology 
of AMSR-E. 

2) Rescaling of all the active microwave soil moisture observations to the climatology of 
ASCAT 

3) Rescaling of the merged active and passive microwave datasets to GLDAS-4Noah 
 

Scaling is performed using cumulative distribution function (CDF) matching which is a well-
established method for calibrating datasets with deviating climatologies (Reichle, Koster et 
al. 2004; Drusch, Wood et al. 2005; Liu, de Jeu et al. 2007; Liu, Parinussa et al. 2011). Scaling 
is performed both to the soil moisture retrievals and their associated errors. CDF-matching is 
applied for each grid cell individually and based on piece-wise linear matching. In general, 
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scaling between two datasets depends on the period and soil moisture conditions covered 
by the two datasets (Zwieback, Dorigo et al. 2012). In addition, the nature of correlation 
between two datasets is an important factor controlling the accurateness of scaling.  

9.2.1 Scaling of passive microwave product s 

The AMSR-E soil moisture retrievals are expected to be more accurate than the other 
passive products due to the relatively low microwave frequency and high temporal and 
spatial resolution of the sensor (Liu et al., 2012). Therefore, for soil moisture retrievals from 
AMSR-E are selected as the reference to which retrievals from other passive instruments are 
rescaled and merged.  

In the ATBD ([RD-3]) it was shown that the TMI product shows a strong linear relationship 
with the with the AMSR-E product, both for original retrieved values and the anomalies from 
the long-term seasonality. This indicates that both the annual cycle and single events (e.g., 
rainfall events and inter-annual variations) are captured similarly well by both datasets.  
Thus, rescaling of TMI to AMSR-E only introduces small uncertainties.  

SSM/I soil moisture estimates are less accurate than AMSR-E specifically over vegetated 
areas (Parinussa, Meesters et al. 2011). In the ATBD ([RD-3]) it was shown that that the 
relationship between SSM/I and AMSR-E soil moisture retrievals tends to depart from 
linearity and that the seasonal cycles captured by SSM/I does not correspond to 
precipitation patterns. However, SSM/I shows a similar response to single events as AMSR-E. 
Hence, it was decided to compute for SSM/I the anomalies from the long-term seasonality, 
scale these anomalies to the dynamic range of the AMSR-E anomalies, and, finally, add them 
to the seasonality of AMSR-E. This introduces an uncertainty to the seasonal cycle.   

The SMMR platform, i.e., Nimbus-7, had a very short overlapping period with the SSM/I 
sensor, and no overlap with the other two sensors. The lack of coincidence between sensors 
prevents to scale SMMR observations directly to AMSR-E, thus allowing only a comparison of 
seasonality. In the ATBD ([RD-3]) it was shown that seasonalities of SMMR and AMSR-E 
agree well and deviate only over some very dry regions. Following the assumption that 
seasonalities are similar SMMR observations (Jan 1979 to August 1987) were scaled to the 
merged AMSR-E/TMI/SSM/I dataset by matching their respective CDF curves. It should be 
noted that this method assumes that the CDFs remain static over time, i.e. there has been 
no change between the two time periods.   

9.2.2 Scaling of active microwave products  

For active instruments, ASCAT soil moisture retrievals are selected as the reference. The ERS 
SCAT and ASCAT soil moisture variations are calibrated between the lowest (0%) and highest 
(100%) values over their individual operational period, which requires further adjustment to 
combine them. The limited overlap in time (i.e., a few months) and space (i.e., only Europe, 
Northern America and Northern Africa) rules out the global adjustment method based on 
the information of their overlapping period. That is, the method applied between TMI and 
AMSR-E cannot be applied between SCAT and ASCAT. Hence, it was assumed that the 
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dynamic ranges of SCAT and ASCAT are identical and the CDF curves of both datasets are 
used for each grid cell to rescale SCAT to ASCAT. By doing this a potential uncertainty is 
introduced by the fact that extreme events (i.e. a completely dry or saturated soil) may not 
have been observed within one of the observation periods. 

9.2.3 Scaling of active+passive ECV  

Due to different observation frequencies, observation principles, and retrieval techniques, 
contributing soil moisture datasets are available in different observation spaces and need to 
be rescaled to a common reference to be able to merge them. As neither of the product 
groups provides a global coverage we currently use the GLDAS-Noah surface soil moisture 
product as a reference. As a consequence, soil moisture of the CCI product is provided in the 
climatology of GLDAS-Noah. This not only affects absolute values of the estimates but may 
also affect trends and extremes present in the original satellite-based soil moisture products. 

To investigate the influences of rescaling against GLDAS-1-Noah, (Liu, Dorigo et al. 2012) 
compared the long term changes in annual averages of the merged microwave products 
before and after rescaling against GLDAS-1-Noah. The long term changes were derived using 
the nonparametric MannςKendall trend test. As the rescaling process (against GLDAS-1-
Noah) changed the range of values of soil moisture product and consequently the absolute 
values of trends, the microwave products (i.e., products before and after rescaling against 
GLDAS-1-Noah) were first normalized before performing the long term trend analysis. The 
rescaling process slightly changed the magnitudes of trends, but not the directions of trends 
(i.e., decrease/increase) (Figure 9.1). Approximately 92% of grid cells with significant trends 
(pb0.05) in the merged products retain significant trends after the rescaling against GLDAS-
1-Noah. The remaining 8% of grid cells are sparsely distributed over all continents, rather 
than concentrated on any specific region, minimizing the influences of data manipulation on 
the relative dynamics in the original datasets. As such, the final blended product is still a 
satellite derived soil moisture product, as it carries the relative dynamics of the original 
passive and active microwave retrievals. 
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A 

 

B 

 

Figure 9.1 (a) Relationships between (x-axis) annual changes in normalized merged passive microwave (PM) 
product (change per year) and (y-axis) annual changes in the normalized one after rescaling against GLDAS-1-
Noah (PM*) (change per year). (b) Same as (a), but for active microwave product. 

To examine the influences of model choice on the final blended product, (Liu, Dorigo et al. 
2012) compared the correlation coefficients and biases between Noah model and the other 
GLDAS-1 models (i.e., Mosaic, CLM and VIC). The soil moisture outputs from these four 
models are highly correlated, which suggests that relative dynamics of soil moisture derived 
from different GLDAS-1 models are quite similar (Figure 9.2τ left column). When it comes 
to the absolute values, the biases between different models vary considerably (right column 
of Figure 9.2). Absolute values from Noah are much higher than Mosaic and slightly higher 
than CLM outputs over most of the world, except for the boreal regions, whereas Noah soil 
moisture estimates are generally lower than the VIC model. The soil moisture outputs from 
CLM, Mosaic, VIC and Noah represent the top 1.8, 2, 10 and 10 cm soil layers, respectively. 
The microwave observations normally measure the wetness conditions for the top 2ς5 cm 
depth which is more comparable with the top soil layer of CLM and Mosaic. However the 
CLM and Mosaic model outputs are only available at the 1° spatial resolution. The absolute 
values of the final blended product (through GLDAS-1-Noah) may underestimate soil 
moisture values over most of the world. 
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Figure 9.2Υ {ǇŜŀǊƳŀƴ ŎƻǊǊŜƭŀǘƛƻƴ ŎƻŜŦŦƛŎƛŜƴǘǎ όƭŜŦǘ ŎƻƭǳƳƴύ ŀƴŘ ōƛŀǎ όƳо ƳҍоΣ ǊƛƎƘǘ ŎƻƭǳƳƴύ ōŜǘǿŜŜƴ ƳƻƴǘƘƭȅ 
Noah and Mosaic, CLM and VIC, respectively, during 2000ς2008. It isnoted that the depth of soil layers 
represents 10, 2, 1.8, and 10 cm for Noah, Mosaic, CLM and VIC, respectively. The soil moisture values for the 
time periods with below-zero surface temperature and snow cover were masked out before conducting 
comparisons (From Liu et al., 2012). 

9.3 Merging  

9.3.1 Merging of passive microwave datasets into passive ECV 

For the current merged passive product only descending overpasses, corresponding to night-
time / early morning observations, were considered. This is because near surface land 
surface temperature gradients are regarded to be reduced at night leading to more robust 
retrievals (Owe, de Jeu et al. 2008). However, recent studies (Brocca, Hasenauer et al. 2011) 
suggest that for specific land cover types day-time observations may provide more robust 
retrievals than night-time observations, although the exact causes are still unknown. The 
accuracy of the two modes needs to be studied in more detail. The accuracy of the mode 
itself should be regarded in combination with the time lag between the mode and the 














