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1 Executive Summary

The Algorithm Theoretical Baselib®mcument (ATBD) provides a detailed description of the
algorithms that are used within the CCI Soil Moisture ECV production system. The ECV
production system has initially been developed within CCI Phase 1 and is continuously being
updated within phase @ reflect the current state of the science driving the system. The ATBD

is, by its nature, rather wdepth, and in order to facilitate frequent updates, and to provide a
more manageable document to the reader the ATBD is provided as four distinct dogiment
These documents consist of an ATBD for the active retrieval, an ATBD for the passive retrieval
and an ATBD for the merging process. An overriding document (part 1) provides an executive
summary sets the ATBD documents within framework for the CCI prajst the ECV
production system.

Section5 of this documentoutlines the processing steps involved in the active product
retrieval. The algorithms that underlie these processing steps are presented in S&atioin
form the basis of the change detection model depsd at the Vienna University of
Technology (TU Wiengection? identifies the shortcomings of the active product retrigval
and the scientific advances that are currently being investigated to addiesse are
described inSection8. These include the latest resulfsom research intolevell inter-
calibration biases between scatterometer missions, improved vegetation modelling, and the
improved resampling of scatterometer measurements to thecBite Global Grid (DGG)
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2 Changelog

2.1 Current version 04.2

This document forms deliverable 2.1 of CCI Phase 2 and provides an update for the ESA CCI
SMO04.2product releasedn 12th January 2018\t version04.2 there are no changes to the
algorithm for generating the activie2data product.

2.2 Prev04.2

The dataset and corresponding ATBD versions are summarised in the executive summary of
the ATBD. Further information can be found in the changelog provided with the data and the
relevant documentation.
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3 Introduction

3.1 Purpose of the Document

The Algothm Theoretical Baseline Document (ATBD) is intended to provide a detailed
description of the scientific background and theoretical justification for the algorithms used
to produce the ECV soil moisture data sets. Furthermore, it describes the sciadtfinces

and algorithmic improvements which are made within the CCI project.

3.2 Targeted Audience

The primary audience for this documeante;

1. Remote sensing experts interested in the retrieval and error characterisatigoib
moisture from activemicrowawe data sets

2. Users of the remotely sensed soil moisture data sets who want to obtain a more in
depth understanding of the algorithms and sources of error
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5 Methodological description on the retrieval of soil moisture from
active microwave sensors

5.1 Principle of the products

The concept of the Level 2 surface soil maistretrieval model developed at the Vienna
University of Technology (TU Wien) for use witthafd scatterometers is a physically
motivated change detection method. The first realisation of the concept was based on
ERSL/2 wind scatterometer (AMWS)data sets(Wagner et al. 1999a; Wagner et al. 1999b;
Wagner et al. 1999a&nd later the approach was successfully transferredh®s Advanced
Scatterometer (ASCAT) data board the METOR satellite(Bartalis et al. 2007; Naeimi et al.
2008; Naeimi et al. 2009)The soil moisture retrieval algorithm is implemented within a
software package called Soil Water Retrieval Package (WARP).

The TU Wien change detection algorithnfiem a mathematical point of vieless complex
than a radiative transfer model and can be inverted analytically. Therefore soil moisture can
be estimated directly from thecatterometer measurements without the need for iterative
adjustment process. Becausd this it is also quite straight forward to perform an error
propagation to estimate the retrieval er for each land surface pix@laeimi et al. 2009)A
disadvantage of the change detection model is that it is a lumped representation of the
measurement process. Therefore, the different contributions to the obsér total
backscatter from the soil, vegetation, and seglgetationinteraction effects cannot be
separated as would be the case toradiative transfer modelling approach. It also means that

it is necessary to calibrate its model parameters using l@ugdcatter time series to implicitly
account forvariations inland cover, surface roughness, and many other effects. The basic
assumptions of the TU Wien change detection model are:

1. The relationship between the backscattering coefficientexpressedn decibels (dB)
and the surface soil moisture content is linear.

2. The backscattering coefficienpt depends strongly on the incidence angle The
relationship, -—is characteristic of the roughness conditions and the land cover, but
is not afected by changes in the soil moisture content.

3. At the spatial scale of thecatterometer measurements roughness and land cover are
stable in time.

4. When vegetation grows, backscatter may decrease or increase, depending on whether
the attenuation of the sai contribution is more important than the enhanced
contribution from the vegetation canopy, or vice versa. Because the relative
magnitude of these effects dependgoon the incidence angle, the curvg - —
changes with vegetation phenology over the year. This effect can be exploited to
correct for the impact of vegetation phenology in the soil moisture retrieval by
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assuming that there are distinct incidence angles and — , wher the
backscattering coefficienf is stable despite seasonal changes in above ground
vegetation biomass for dry and wet conditions.

5. Vegetation phenology influences on a seasonal scale. Local sherm fluctuations
are suppressed at the scadé the scatterometer measurements.

Overall, the results obtained in experimental validation stud@sboth ERS/2 AMI-WSand
METORA ASCAThave showrthat these assumptions are in geneegdpropriate Also, they

have received support from theoreticaludies. For example, the linearity assumption (point

1 above has been held to be in contradiction to the Integral Equation Model (IEM) that
suggests a noftinear relationship. But, as recently demonstrated by Zribi (personal
communication), this contradtion disappears when IEM is coupled with arsail transition
model as first proposed for the SMOS retrie{@thneeberger et al. 20D4With respect to
seasmal vegetation effects, a recent study IBrow et al. (2010shows that the change
detection model is better able to describe the soil moisture retaieskill over a larger range

of incidence angles than the widely used Cloud Mo@&itema and Ulaby 1978in
combination with the IEMFung 1994HSsieh et al. 1997 But of course, there are instances
where one or more of these assumptions break down. Currently the biggest problem appears
to be that under extremely dry condumins, as might be found in deserts or sesnd
environments during the dry season, backscatter decreases when the soil becomes slightly
wet.

5.2 Overview of processing steps

In the software package WARP the TU Wien change detection model is applied to
ERS 1/2AMI-WSand METOA ASCAT measurements via a sequence of processing steps (see
Figurel for an overview):

1. Resampling of data:The scatterometer measurements in orbit geometry are
resampled to a fixed Discrete Global Grid (DGAgdt&8/ARP 5 grid.

2. Sensor intracalibration: Resampled backscatter values are calibrated to a defined
calibration reference, in order to correct for temporal emerging variations of the
backscatter coefficient caused by instrument related anomalies.

3. Azimuthal normalisation: Backscatter values are normalised in terms of their
acquisition azimuth angle, based on legfx tables with longerm mean values.

4. Estimate noise ofl : Esimate the standard deviation (ESD),ofdue to instrument
noise, speckle and residual azimuthal effects based on the measurements of the fore
and aft antennas.

5. Model incidence angle dependencyDetermine the mean annual cycle of the
incidence angle &haviour of, by making use of the fact that the scatterometer
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provides instantaneous measurements at two different incidence angles. The
incidence angle dependency is described by a second order polynomial determined by
the slope and the curvature h€ slope and the curvature show a distinct annual cycle,
determined by vegetation growth and decay. Slope and curvature parameters are
determined by fitting a first degree polynomial to each group of local slope values. The
results are the first and secorderivatives of backscatter at 40° for each day of year.
The final slope and curvature values are the result of averaging these derivative values
over several periods with different duration (B4 days). Corresponding noise values
are also calculated.

6. Normalisation of backscatter measurementExtrapolate all, taken over the entire
incidence angle range to a reference angle-of 1 mahd calculate the average

, — based on the backscatter triplet.

External Data Model Parameter Time Series

L1b SCAT data

Resampling Data to DGG

I

Sensor Intra-Calibration

k.

v
{Azimuthal NormalisationJi
\ v

Calculate Estimated |
Standard Deviation (ESD)J

I E—

{ Estimate Slope, |

Curvature and Noise

Yy YyYyyvy

Calculate Backscatter
at 40° and Noise

17

Temperature data >| Freezg »’Th.aw
| Classification

h 4 A
‘ Estimate Dry and Wet

Reference and Noise

¥

Climate data e Estimate Wet Correction

Y Y VY Y

Calculate Surface
Soil Moisture and Noise

Figurel: Overview of the processing steps in WARP
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7. Estimate noise ol P, g Based on the rules of error propagation the estimated
standard deviation of — is calculated.

8. Detect frost and snow conditiondJse decisionree trained by historical temperature
datato detect freeze/thawing events
9. Determine dry and wet referencesifter,, has been normalised with respect to the

incidence angle, vegetation phenology effects gnd—  outliers have been
remowed, dry and wet soil backscatter reference curves, — HQ and
” — HQ are determined. These maximum and minimum — are

determined by statistical methods of noise analysis.

10.Wet reference correctionin dry climates the wet reference estimation can be biased
given that there may never be enough rainfall to thoroughly wet the soil surface layer
(Wagner and Scipal 20p0To correct biasedq — HQ in such dry climates,
Koeppen climate classification dgteottek et al. 200Bis used in conjunction with the
sensitivity to soil moisture (defined in turn as the difference between the dry and wet
parameters derived in the previous step).

11.Calculae surface soil moisture:Calculate the surface soil moisture by comparing
., — tothe seasonally varying dry and wet reference values.

12.Estimate retrieval error of surface soil moistur&€alculate the estimated standard
deviation of the suidce soil moisture by rules of error propagation.
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6 Description of Algorithms

This section presents the algorithms that underlie the processing steps presented in section
5.2, and forms the core of this algorithm theoreticaldedine document (ATBD)

6.1 Resampling

The task of resampling is to interpolate L1b Scatterometer measurements, given in the orbit
grid, to a fixed Earth grid. For this purpose a Discrete Global Grid (DGG) has been developed
by TU Wien and is called WARP 8.gfhe WARP 5 grid contains 3264391 grid points with an
equal spacing of 12.5 km in longitude and latitude. Each of the grid points is identified by a
unique grid point index (GPI). The result of the resampling is a time series of interpolated
measurementst each GPI over lan&igure2).

R+ DGG
" @ Orbit Grid

20E L B0E R 180E
340N e MORE

Figure2: Orbit grid (dots) and WARP 5 grid (crosses) over Italy.

The geometry of th&MI-WS andASCAT instrumesis described ifrigure3 where the three
satellite beams are indicated as fore, mid and aft beam. For each point in the orbit grid, all
GPIs within an 18 km radius are determined by a nearest neighbour search, from which the
interpolated values for the backscatter sigma naufhfor each of the three beams (and
other attributes such as incidence angle) are obtained as weighted average, with weighting
coefficients computed according to the Hamming window function:

" M
Dw T™T ﬂ8(¢\|@i— Egn.6-1

wherebyi dlenotes the distance between the actual GPI and the orbit grid point] ahd
diameter of the search radius. We chose the Hamming window function for interpolation,
because it is also used in the creationtleé L1b product. Also two other window functions
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are currently supported, namely Lanczos and Inverse Distance Weighting, but the relative
merits of the respective functions have yet to be evaluated.

The result of the resampling step is, for each land @Rilme seriesi , containingd
records

da Q ,phxBrh p Q0O Eqn.6-2
each consisting of a time stangpand measurement triples fobackscatter, j , incidence
angle —; and azimuth anglée, . The subscripo™ " R distinguishes between the

fore, mid, and aftbeam. Note that in the processing chain described below, the-8eréees
are processed for eachREseparately.

6.2 Sensor intra -calibration

During the mission lifetime of a scatterometer in space, numerous disturbances may influence
the overall sensor performance and accordingly affect the accuracy of the normedded

cross sectiork if disregared. Space and satellite agencies, such as ESA and EUMETSAT, are
routinely monitoring the scatterometer performance in order to correct for such sensor
related performance variation®\ radiometric calibration methodology for Europeai&hd
scatterometer nissions was developed at TU Wien to ensure consistent backscatter
observations of these scatterometer missidieimer 2014)Sensor intrecalibration aims to
support already established calibration efforts, undertaken by the operating Space Agency,
with the objective to monitor and correct for residluscatterometer performance anomalies.
CKS NIYRAZ2YSUNRO OFftAONI GA2Y A& LISNF2NXYSR o8
surface, presumed to exhibit a tempadsaktable, spatidy homogeneousand azimuthdy
isotropic backscatter responsaver an extended area. With reference to these backscatter
properties, a backscattaralibration model(Eqn. 53), has beerintroduced for sensor intra
calibration. The calibration model was adopted fraong and Skouson (1998ith respect to

the measurement geometry RS AMWS Backscatter coefficients?0 (i 3 1) dbserved for

a calibration target T are composed of the backscatter coefficiéni ‘ ob the calibration

target, the intracalibration coefficientGad (i Z ) dnd sensor noise. The azimuth anglep

denotes a spedit antenna bean of the fan-beam scatterometerdetermined as a discrete
azimuth angle resulting from the chosen orbit and the antenna mounting with respect to the
satellite groundrack

~ o~ ~ o~

” d}_h ” - 6 d]_h - Eqn 6‘3

Because of the postulated characteristics of the employed calibration targets, the backscatter
coefficient” %6 ‘ofla specific calibration targdtcan be defined as a function of the incidence
angle‘ exclusively. Théntra-calibration coefficientGa0 X b) incbrporates any arbitrary
performance anomalies related to thimastrument, accounting for variations in individual
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antenna characteristics, sensor component degradatimnany other anmalies influenmg

the calibration level of the scatterometen the case of a perfectly calibrated instrument, the
intra-calibration coefficientGa0 U = 1) ‘vahishes,resulting in observations% G > )¢ =
deviating from the target backscatter coeféat, * %70 ‘, by the additivenstrument noise term

. Furthermore, instrument noisé is treated as white Gaussian noise wattro mean in the
calibration model. Assuming a perfectly calibrated scatterometer for the time being,
estimate of the unknowibackscatter coefficient®t¢ ‘can be determined for each calibration
target as afunction of incidence anglé by averaging a sufficient number of observations.
Analyses of the backscatteharacteristics of the used natural calibration targets indicated
that the backscattet/incidence anglalependency of targets can be adequately modeled by
a 2order-polynomial function centered at 40 degreascidence angle as stated in the
following equation(Reimer 2014)

, — 0 1mMJ 0 tTmd — 11mJd Eqn.6-4

Polynomial coefficients of the calibration target backscatter modlel, the calibration
reference, are determined by an ordinary least square estimation with respect to the
extracteddata. Separate calibration refereas are determined for ascending and descending
orbit overpasses of thescatterometers because of known systematic differences in the
recorded tackscatter coefficien{Bartalis et al. 2006)The derived backscatter calibration
reference, %06 ‘ constitutes the time invariant backscatter resporfea calibration target T.
Hence, deviations of the recorded backscatter coefficietd (i = p) toSthe calibration
reference " %0 ‘ abe held to give estimates of calibration anomalies incorporated in the
calibration coefficient Gad (i = )./ In>the.case of theEuropean @and scatterometers
calibration anomalies can affeparticular antenna beams ohé entire scatterometer system.
Consequently, intracalibration coefficientsre determined for each scatterometer antenna
beam. , separately Eqn. 53 can be solved with respect to the intcalibration coefficient,
resulting in realizations dfixd0 (i X ) dffécted by additive instrument noiseper calibration
target T as stated in the following.

6 7 oh-br . P . — Eqn.6-5
Calibration target specific ird-calibration coefficientGa, ¥ (0 I ) ar& deduced for each
antenna beam of the scatterometer separately, discriminating between ascending and
descending orbit overpasses by utilizthg corresponding calibration target referencéo ‘. 0
The intracalibration coefficient is exclusivelan attribute of the scatterometer and
consequently independent of the calibration target T used for determinafidrerefore, the
presented intracalibration approach makes use of numerous calibration targeta fatust
determination of the scatterometer related intrealibration coefficients. Calibration
coefficientsGa0 (i X 1) dreSinferred for each antenna beam, per month, as a function of the
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incidence anglé by fitting a straight line through the target specific coefficiefis © G >v) * X
of all employed calibration targefB. Finally, calibrated backscatter epgations are derived

by subtracting the intracalibration coefficieniGa from the observed backscatter coefficient
"0 (i p)tb &hieve a consistent calibration level of theatterometer over time.

. Oohbr . Oh-br 0  Ohbr Eqn.6-6

Figure3: ERE/2 AMIFWS and MetogA ASCAT geometry, introducing swaths, beams and nodt
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6.3 Azimuthal Normalisation

In someregions backscattey varies strongly with azimuth or look angle, an effect known as
azimuthally anisotropy. These azimuthal effects are accounted for by applying a polynomial
correction term to the backscatter values. In this step, the coefficiehtsepolynomials are
computed from the backscatter time series.

In generalthe azimuth angle under which a location is seen depends on the beam, (fucke

or aft-beam), the swath (left or right) and the satellite direction (ascending or descending),
resulting in 6 azimuth configurations for AMIS and 12 azimuth configurations for ASCAT
respectively.For each of these configuratiods the, - —dependency is modelled as a
second order polynomiaj —. The coefficients of these polynomials are determined by
fitting the model to all observations falling into the respective configuration category.
Furthermore, an overall mod@l — is fitted to all observations, resulting in a total of 3 x 13

= 39 parametergor ASCAT and 3 x 7 = 21 parameters for-AMBI respectively

During the subsequent steps, a correction bias is applied to each backscatter, value
depending o its azimuthal configuration:

Ap N Ky D [h b [h Eqn.6-7

This approach has been suggested, and is justified and described in more detail in
Bartalis et al. (2006)

6.4 Estimate Noise of Backscatter Measurements

This step initialises the error propagation in the algorithm. It estimates the random nibése o
single beam measurement . This is based on the following observation: all three beams
observe the same region (soil moisture), and the fared aftbeam have the same incidence
angle. Thus, as long as there are no azimuthal effects, the measuatsemf the for and aft

beam are comparable, i.e., statistically speaking, they are instances of the same distribution.
Hence, the expectation of the difference:

1D A X Eqn6-8

should be Oand its variance should be twice the variance of one of the beams (assuming, the
measurements are independent):

OAL ¢OAD Eqn6-9
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By taking the square root and-geranging, this gives us antesate of the standard deviation
of , , which is called estimated standard deviation (ESD, sed-ajsoe4):

0 OA

M—E Eqn6-10

wherebyi 071Q s obtaired as empirical standard deviation)obver the whole time series.

%3 $ OOA

0.2 0.3

M»’éﬁ 06, et R g & >30
== L s «

Figure4: Global distribution of ESD.

6.5 Model Incidence Angle Dependence and Vegetation Correction

The key equation of the model expresses the observed battksga —Rd as a function of
the incidence angle—at day'Q, more precisely as a second order polynomial about the
reference angle— T 11 (Wagner et al. 1999b

~ ~ ~

” _m ” - m ” - m -
B” o — — Egn6-11
C
whereby the Othorder coefficient, — HQ is the normalised backatter at thet Tt
reference incidence angle, and the 1st and 2nd order coefficients- FQ and, — HQ

are referred to as slope and curvature parameters @Sgereb). Slope and curvature meate

the effect of vegetation on the functional relationship betwegn and — for sparse
vegetation, the curve tends to drop off rapidly, while for fully grown vegetation, it becomes
less steep, almost horizontal in the case of rain foréggyresb). In the model, we assume

that the vegetation state is always the same at the same day of the year, i.e. it does not change
inter-annually, and is thus a function of the daftyearQ Hence, for each GPI, there will be
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366 vegedtion curves, each determined by a slope/curvature pair— HQh, — Q.
The slope and curvature parameters, which determine, in conjunction with the incidence
angle, the effect of vegetation on the backscatter, are eated during this step.

a) Soil moisture change b) Vegetation change

o [i0)
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Figure5: Backscatter as function of the incidence angle. In WARP, it is assumed that an inci
soil moisture simply shifts the curve upwards (a), while a change in vegetation affects its sha
higher order moments (h).

Slope and curvature are determined as the coefficients of a straight line fitted to the so called
local slopes Local slopes are estimates of the first derivative of the
backscatter incidence angle dependency, and are congolas difference quotients between
fore-and midbeam, and aftand midbeam, respectively:
YK

i
To be more specific, each backscatter beiple , 1 h, 7 h, ; (fore-, mid, and aftbeam
measurements) taken at incidence angles, h— h—; yields two local slope estimates at
day'Q:

A Egn6-12

o Ao A Aj

A& I'n i A A
q I'e T Eqn6-13

—h —h 3 » h » h
i K — Eqn6-14

S —h T

These local slopes are taken as instances of the first derivaltizgn6-15

, K, — K, — K- — Eqn6-15

The width_ of the time window is crucial for the quality tdfe estimates. A too short time
window length_ yields noisy slopg — HQ and curvature, — HQ estimates, while a

too long window filters a remarkablpart of the vegetatio variation resulting in a bias
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Moreover, the tme-window length _ is also dependent on the regional climate. With
reference to the spatial resolution of scatterometersjstassumed that vegetation is not
changing remarkably during a less thamw@ek period and the seasonatgetation change
does nottake longer than 12 weeks. Simulations have been performed to quantify an
optimum time window length for different climate regions. It was found that a time window
length of 6weeks represents a good balance between noise and bias introduced to the
estimate of slope and curvaturglobally. Slope ah curvature values are computed by
employing local slope values located within the fixade window length_ centered at the
specific dayof-yearQ Q¢ @ . The regression fit is performed lmaking use okernel
smoother method known as Local Linear Regression utilizing an Epanechnikov Kkpel.
and curvature are determined as the parameters of the local linear fit conducted over the
whole rangeof incidence angles of the local slopes. Therefore, Islople values are assigned
with weights according teheir distance in time from the evaluation day determined by the
Epanechnikov kernel. The error varianoé the slopeb &} — HRQ and curvature

0 ®) — HQ parameters is estimated by means of standard linestimation theory.
Detailed information about the estimation process of slope and curvature can be fiound
(Melzer 2013)
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Figure6: The effect of the time window size on the slope estimate

6.6 Incidence Angle Normalisation of Backscatte r

Backscatter measurements taken at different incidence angles are not directly comparable.
Having retrieved the slope and curvature parameters, we can invert the niegies-15 in

order to compute from a backsdar measurement taken at an arbitrary incidence angle the
corresponding value at the reference angle. Letting
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Eqn6-16
we get Eqn6-17

P

wh— o — Ko o o o  Fanel7

Note that we have not included the day of y&aras parameter of the backscatter, —

for several reasons. First, in the model the backscatter for a given day is thought of a function

of the incidence angle, but not of time. It doeepend on time, though not in a direct

functional sense, but indirectly, througRnQa SFTFFSOG 2y GKS at2L3S Iy
indexes. Second, the time parameter can always be retrieved from the time series via the
indexQso adding it to the grameter list is redundant. Third, the notation becomes more

concise. However, we must USE as argument to the slope and curvatures parameters, since

it is used as index into these parameter arrays.

If we assume that the errors of the normalisedckacatter, slope and curvaturei.e., the
components ofe - are uncorrelated, the covariance matrix @fs simply

#1 00 OWMHAO— i MAO— [ Eqn6-18
The Jacobian 6€is obtained as:

T Q . .
e ph —h ™ 3— 8 Eqn6-19
Thus, according t&qn6-35, the noise variancef the normalised backscatter for beagis
Eqn6-20:
OAQ — ow OAO0— K 33—
m® V0A0 — Q. a— Eqné-20

Finally, the three beamg now having been shifted to a common reference anglare
averaged:

» h Egn6-21
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The corresponding noise variance is given by

0A0 — ° OAG —
w
Nohoh

Eqn6-22

As can be seen, averaging over the three beamghmeffect that the variance of the noise
due to instrument noise, speckle and azimuthal effects is lowered by a factor of three. It does,
however, not lower the error due to the lack of fit of the slope mo@ghgner 1998

6.7 Determination of Dry and Wet References

For a given GPthe dry, — HQ and wet, — HQ reference are the historically
lowest and highest normalized backscatter values, respectively, measured at this location at a
given day d. The dry and wet references are storedaaameter arrays indexed by the time,

just as slope and curvature.

The WARP model assumes that the vegetation (i.e., backseettgrcidence angle) curves

for dormant and full vegetation intersect, and that the point of intersection depends on the
soil moisture conditions: the intersection points for the driest and wettest conditions are
called dry and wet crossover angles, respectivElgure7). The wet crossover angle is

at 40 degrees (which is also the reference angle), while the dry crossoverangls located

at 25 degrees (these values have been determined empirically). The importance of the
crossover angle concept lies in the fact that at thessover angles, vegetation has no effect
on backscatte(Wagner 1998

fully developed vegetation
dormant vegetation

fully developed vegetation

Backscatter coefficient ¢” (dB)

dormant vegetation

dry
Incidence angle 6 (deg)

Figure7: Crossover angle concept for vegetation correction
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In order to determine the lowest backscatter value irrespective of the vegetation conditions,
the normalised badcatter measurements are first shifted to the dry crossover angle:

” - ” - n - FD (4)_
. o Eqgn6-23
P, —f o h f
C
with 3— — — hand corresponding noise estimate
O &) — LOE — Vel — R a—
R ~ Eqn6-24
? w, — MK 3 8 a

Note the similarity toEqn6-17 and Eqn6-20, but in this case, we are not shiftingpin the
individual incidence angle to the reference angle, but from the reference angle to the dry
crossover angle.

From the resulting empirical distribution, the average of the 0 2z ¢® b smallest

values is used as an estimate of the lowest lsaaker value at the dry crossover angle:

b — h Eqn6-25

i‘) ” qn =

wherebyl is a permutation that sorts the timeseries in ascending order w.r.t. tekbcatter
values. Since the normalised backscatter values have different noise variances (depending on
the day and incidence angle of acquisition), there exists no simple general expression for the

noise variance of the average, but we have (assuming rihise contributions of the
measurements are uncorrelated):

0 Wj — L 8 Eqn6-26
Finally, for each day §, @ — has to be shifted back to the reference angle along its
corresponding vegetation curve, in order to obtajn  — HQ:
” - FD ” - ” - Fn 3'_[
P L — fQ 3 Eqn6-27
C
The noise is given by
VA — [ VA — 0] — K 3
Eqn6-28

Poal, — o s
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This is the final estimate of the noise variance for the dry reference. The estimates for the wet
reference

” - FI‘) n - n - FD 3‘:[
E” . FD 3{ Eqn.6-29
C
(wherez— — — and its corresponding noise
0 @} —
. 0 W} — DLw], — K 3 Eqn6-30
?‘ Oi, — H 3

are obtained in a completely analogue fashion, but instead of the 2.5 % lowest vaJues,at
the 2.5 % highest values have to be averaged at theon@ssover anglg in order to
compute,, —

It is worth mentioning that due to the selection of the cramger angles, which are fixed at
25° for, and 40° for, globally, the dry reference is changingeovime, whereas
” — HQ is constant (i.e., it does not depend on the daJhis is because the wet
crossover angle is equal to the reference angle, and shas k 11(seeFigure8). Aglobal
map of abovementioned references is giverrigure9.

Figure8: Example of the dry and wet reference characteristics@P#near Salamanca, Spain.


























































































