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1 Executive Summary  

The Algorithm Theoretical Baseline Document (ATBD) provides a detailed description of the 

algorithms that are used within the CCI Soil Moisture ECV production system. The ECV 

production system has initially been developed within CCI Phase 1 and is continuously being 

updated within phase 2 to reflect the current state of the science driving the system. The ATBD 

is, by its nature, rather in-depth, and in order to facilitate frequent updates, and to provide a 

more manageable document to the reader the ATBD is provided as four distinct documents. 

These documents consist of an ATBD for the active retrieval, an ATBD for the passive retrieval 

and an ATBD for the merging process. An overriding document (part 1) provides an executive 

summary sets the ATBD documents within framework for the CCI project and the ECV 

production system.  

Section 5 of this document outlines the processing steps involved in the active product 

retrieval. The algorithms that underlie these processing steps are presented in Section 6 and 

form the basis of the change detection model developed at the Vienna University of 

Technology (TU Wien). Section 7 identifies the shortcomings of the active product retrieval, 

and the scientific advances that are currently being investigated to address these are 

described in Section 8. These include the latest results from research into level-1 inter-

calibration biases between scatterometer missions, improved vegetation modelling, and the 

improved resampling of scatterometer measurements to the Discrete Global Grid (DGG). 
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2 Change log 

2.1 Current version 04.2 

This document forms deliverable 2.1 of CCI Phase 2 and provides an update for the ESA CCI 

SM 04.2 product released on 12th January 2018. At version 04.2, there are no changes to the 

algorithm for generating the active L2 data product. 

2.2 Pre v04.2 

The dataset  and corresponding ATBD versions are summarised in the executive summary of 

the ATBD. Further information can be found in the changelog provided with the data and the 

relevant documentation. 
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3 Introduction  

3.1 Purpose of the Document   

The Algorithm Theoretical Baseline Document (ATBD) is intended to provide a detailed 

description of the scientific background and theoretical justification for the algorithms used 

to produce the ECV soil moisture data sets. Furthermore, it describes the scientific advances 

and algorithmic improvements which are made within the CCI project.  

3.2 Targeted Audience  

The primary audience for this document are: 

1. Remote sensing experts interested in the retrieval and error characterisation of soil 

moisture from active microwave data sets. 

2. Users of the remotely sensed soil moisture data sets who want to obtain a more in-

depth understanding of the algorithms and sources of error. 
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5 Methodological description on the retrieval of soil moisture from 
active microwave sensors  

5.1 Principle of the products  

The concept of the Level 2 surface soil moisture retrieval model developed at the Vienna 

University of Technology (TU Wien) for use with C-band scatterometers is a physically 

motivated change detection method. The first realisation of the concept was based on  

ERS 1/2 wind scatterometer (AMI-WS) data sets (Wagner et al. 1999a; Wagner et al. 1999b; 

Wagner et al. 1999c) and later the approach was successfully transferred to the Advanced 

Scatterometer (ASCAT) data on board the METOP-A satellite (Bartalis et al. 2007; Naeimi et al. 

2008; Naeimi et al. 2009). The soil moisture retrieval algorithm is implemented within a 

software package called Soil Water Retrieval Package (WARP). 

The TU Wien change detection algorithm is, from a mathematical point of view, less complex 

than a radiative transfer model and can be inverted analytically. Therefore soil moisture can 

be estimated directly from the scatterometer measurements without the need for iterative 

adjustment process. Because of this it is also quite straight forward to perform an error 

propagation to estimate the retrieval error for each land surface pixel (Naeimi et al. 2009). A 

disadvantage of the change detection model is that it is a lumped representation of the 

measurement process. Therefore, the different contributions to the observed total 

backscatter from the soil, vegetation, and soil-vegetation-interaction effects cannot be 

separated as would be the case for a radiative transfer modelling approach. It also means that 

it is necessary to calibrate its model parameters using long backscatter time series to implicitly 

account for variations in land cover, surface roughness, and many other effects. The basic 

assumptions of the TU Wien change detection model are: 

1. The relationship between the backscattering coefficient „  expressed in decibels (dB) 

and the surface soil moisture content is linear. 

2. The backscattering coefficient „  depends strongly on the incidence angle —. The 

relationship „  - — is characteristic of the roughness conditions and the land cover, but 

is not affected by changes in the soil moisture content. 

3. At the spatial scale of the scatterometer measurements roughness and land cover are 

stable in time. 

4. When vegetation grows, backscatter may decrease or increase, depending on whether 

the attenuation of the soil contribution is more important than the enhanced 

contribution from the vegetation canopy, or vice versa. Because the relative 

magnitude of these effects depends upon the incidence angle, the curve „  - — 

changes with vegetation phenology over the year. This effect can be exploited to 

correct for the impact of vegetation phenology in the soil moisture retrieval by 
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assuming that there are distinct incidence angles —  and — , where the 

backscattering coefficient „  is stable despite seasonal changes in above ground 

vegetation biomass for dry and wet conditions. 

5. Vegetation phenology influences „  on a seasonal scale. Local short-term fluctuations 

are suppressed at the scale of the scatterometer measurements. 

Overall, the results obtained in experimental validation studies, for both ERS-1/2 AMI-WS and 

METOP-A ASCAT, have shown that these assumptions are in general appropriate. Also, they 

have received support from theoretical studies. For example, the linearity assumption (point 

1 above) has been held to be in contradiction to the Integral Equation Model (IEM) that 

suggests a non-linear relationship. But, as recently demonstrated by Zribi (personal 

communication), this contradiction disappears when IEM is coupled with an air-soil transition 

model as first proposed for the SMOS retrieval (Schneeberger et al. 2004). With respect to 

seasonal vegetation effects, a recent study by Crow et al. (2010) shows that the change 

detection model is better able to describe the soil moisture retrieval skill over a larger range 

of incidence angles than the widely used Cloud Model (Attema and Ulaby 1978) in 

combination with the IEM (Fung 1994; Hsieh et al. 1997). But of course, there are instances 

where one or more of these assumptions break down. Currently the biggest problem appears 

to be that under extremely dry conditions, as might be found in deserts or semi-arid 

environments during the dry season, backscatter decreases when the soil becomes slightly 

wet. 

5.2 Overview of processing steps  

In the software package WARP the TU Wien change detection model is applied to  

ERS 1/2 AMI-WS and METOP-A ASCAT measurements via a sequence of processing steps (see 

Figure 1 for an overview): 

1. Resampling of data: The scatterometer measurements in orbit geometry are 

resampled to a fixed Discrete Global Grid (DGG), called WARP 5 grid. 

2. Sensor intra-calibration: Resampled backscatter values are calibrated to a defined 

calibration reference, in order to correct for temporal emerging variations of the  „  

backscatter coefficient caused by instrument related anomalies. 

3. Azimuthal normalisation: Backscatter values are normalised in terms of their 

acquisition azimuth angle, based on look-up tables with long-term mean values. 

4. Estimate noise of Ɑ : Estimate the standard deviation (ESD) of „  due to instrument 

noise, speckle and residual azimuthal effects based on the measurements of the fore- 

and aft antennas. 

5. Model incidence angle dependency: Determine the mean annual cycle of the 

incidence angle behaviour of „  by making use of the fact that the scatterometer 
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provides instantaneous measurements at two different incidence angles. The 

incidence angle dependency is described by a second order polynomial determined by 

the slope and the curvature. The slope and the curvature show a distinct annual cycle, 

determined by vegetation growth and decay. Slope and curvature parameters are 

determined by fitting a first degree polynomial to each group of local slope values. The 

results are the first and second derivatives of backscatter at 40° for each day of year. 

The final slope and curvature values are the result of averaging these derivative values 

over several periods with different duration (14-84 days). Corresponding noise values 

are also calculated. 

6. Normalisation of backscatter measurements: Extrapolate all „  taken over the entire 

incidence angle range to a reference angle of — τπЈ and calculate the average 

„ —  based on the backscatter triplet. 

 

 

Figure 1: Overview of the processing steps in WARP 5.6 
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7. Estimate noise of Ɑ Ᵽ►▄█: Based on the rules of error propagation the estimated 

standard deviation of „ —  is calculated. 

8. Detect frost and snow conditions: Use decision tree trained by historical temperature 

data to detect freeze/thawing events 

9. Determine dry and wet references: After „  has been normalised with respect to the 

incidence angle, vegetation phenology effects and „ —  outliers have been 

removed, dry and wet soil backscatter reference curves, „ — ȟὨ  and 

„ — ȟὨ  are determined. These maximum and minimum „ —  are 

determined by statistical methods of noise analysis. 

10. Wet reference correction: In dry climates the wet reference estimation can be biased 

given that there may never be enough rainfall to thoroughly wet the soil surface layer 

(Wagner and Scipal 2000). To correct biased „ — ȟὨ  in such dry climates, 

Koeppen climate classification data (Kottek et al. 2006) is used in conjunction with the 

sensitivity to soil moisture (defined in turn as the difference between the dry and wet 

parameters derived in the previous step). 

11. Calculate surface soil moisture: Calculate the surface soil moisture by comparing 

„ —  to the seasonally varying dry and wet reference values. 

12. Estimate retrieval error of surface soil moisture: Calculate the estimated standard 

deviation of the surface soil moisture by rules of error propagation. 
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6 Description of Algorithms  

This section presents the algorithms that underlie the processing steps presented in section 

5.2, and forms the core of this algorithm theoretical baseline document (ATBD). 

6.1 Resampling  

The task of resampling is to interpolate L1b Scatterometer measurements, given in the orbit 

grid, to a fixed Earth grid. For this purpose a Discrete Global Grid (DGG) has been developed 

by TU Wien and is called WARP 5 grid. The WARP 5 grid contains 3264391 grid points with an 

equal spacing of 12.5 km in longitude and latitude. Each of the grid points is identified by a 

unique grid point index (GPI). The result of the resampling is a time series of interpolated 

measurements at each GPI over land (Figure 2).  

 

Figure 2: Orbit grid (dots) and WARP 5 grid (crosses) over Italy. 

The geometry of the AMI-WS and ASCAT instruments is described in Figure 3 where the three 

satellite beams are indicated as fore, mid and aft beam. For each point in the orbit grid, all 

GPIs within an 18 km radius are determined by a nearest neighbour search, from which the 

interpolated values for the backscatter sigma naught ʎ for each of the three beams (and 

other attributes such as incidence angle) are obtained as weighted average, with weighting 

coefficients computed according to the Hamming window function: 

 ύὼ πȢυτ πȢτφÃÏÓς“
ὼ

ὶ
 Eqn. 6-1 

whereby ὼ denotes the distance between the actual GPI and the orbit grid point, and ὶ the 

diameter of the search radius. We chose the Hamming window function for interpolation, 

because it is also used in the creation of the L1b product. Also two other window functions 
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are currently supported, namely Lanczos and Inverse Distance Weighting, but the relative 

merits of the respective functions have yet to be evaluated.  

The result of the resampling step is, for each land GPI, a time series ὸί , containing ὔ  

records 

 ὸί Ὥ  „ȟȟ—ȟȟʒȟȟὸȟ ρ Ὥ  ὔ  Eqn. 6-2 

each consisting of a time stamp ὸ and measurement triples for backscatter „ȟ, incidence 

angle  —ȟ  and azimuth angle ‰ȟ. The subscript ὦɴ Ὢȟάȟὥ distinguishes between the 

fore, mid-, and aft-beam. Note that in the processing chain described below, the time-series 

are processed for each GPI separately. 

6.2 Sensor intra -calibration  

During the mission lifetime of a scatterometer in space, numerous disturbances may influence 

the overall sensor performance and accordingly affect the accuracy of the normalised radar 

cross section ʎ if disregarded. Space and satellite agencies, such as ESA and EUMETSAT, are 

routinely monitoring the scatterometer performance in order to correct for such sensor-

related performance variations. A radiometric calibration methodology for European C-band 

scatterometer missions was developed at TU Wien to ensure consistent backscatter 

observations of these scatterometer missions (Reimer 2014). Sensor intra-calibration aims to 

support already established calibration efforts, undertaken by the operating Space Agency, 

with the objective to monitor and correct for residual scatterometer performance anomalies. 

¢ƘŜ ǊŀŘƛƻƳŜǘǊƛŎ ŎŀƭƛōǊŀǘƛƻƴ ƛǎ ǇŜǊŦƻǊƳŜŘ ōȅ ǳǘƛƭƛȊƛƴƎ ƴŀǘǳǊŀƭ ŎŀƭƛōǊŀǘƛƻƴ ǘŀǊƎŜǘǎ ƻƴ ǘƘŜ 9ŀǊǘƘΩǎ 

surface, presumed to exhibit a temporally stable, spatially homogeneous, and azimuthally 

isotropic backscatter response over an extended area. With reference to these backscatter 

properties, a backscatter calibration model, (Eqn. 5-3), has been introduced for sensor intra-

calibration. The calibration model was adopted from Long and Skouson (1996) with respect to 

the measurement geometry of ERS AMI-WS. Backscatter coefficients ̀0όǘΣ ʻΣ ˒b) observed for 

a calibration target T are composed of the backscatter coefficient 0̀
Tόʻύ of the calibration 

target, the intra-calibration coefficient CIAόǘΣ ʻΣ ˒b) and sensor noise ʁ. The azimuth angle ˒b 

denotes a specific antenna beam b of the fan-beam scatterometer, determined as a discrete 

azimuth angle resulting from the chosen orbit and the antenna mounting with respect to the 

satellite ground track. 

 „ ὸȟ—ȟ• „ — ὅ ὸȟ—ȟ•  ‐  Eqn. 6-3 

Because of the postulated characteristics of the employed calibration targets, the backscatter 

coefficient ̀ 0
Tόʻύ of a specific calibration target T can be defined as a function of the incidence 

angle ̒  exclusively. The intra-calibration coefficient CIAόǘΣ ʻΣ ˒b) incorporates any arbitrary 

performance anomalies related to the instrument, accounting for variations in individual 
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antenna characteristics, sensor component degradations or any other anomalies influencing  

the calibration level of the scatterometer. In the case of a perfectly calibrated instrument, the 

intra-calibration coefficient CIAόǘΣ ʻΣ ˒b) vanishes, resulting in observations ̀0όǘΣ ʻΣ ˒b) 

deviating from the target backscatter coefficient, ̀ 0
Tόʻύ, by the additive instrument noise term 

.ʁ Furthermore, instrument noise ʁ is treated as white Gaussian noise with zero mean in the 

calibration model. Assuming a perfectly calibrated scatterometer for the time being, an 

estimate of the unknown backscatter coefficient ̀0Tόʻύ can be determined for each calibration 

target as a function of incidence angle ̒ by averaging a sufficient number of observations. 

Analyses of the backscatter characteristics of the used natural calibration targets indicated 

that the backscatterς/incidence angle dependency of targets can be adequately modeled by 

a 2-order-polynomial function centered at 40 degrees incidence angle as stated in the 

following equation (Reimer 2014). 

 „ —   ὄ τπЈ ὄ τπЈz— τπЈ Eqn. 6-4 

Polynomial coefficients of the calibration target backscatter model, i.e., the calibration 

reference, are determined by an ordinary least square estimation with respect to the 

extracted data. Separate calibration references are determined for ascending and descending 

orbit overpasses of the scatterometers because of known systematic differences in the 

recorded backscatter coefficient (Bartalis et al. 2006). The derived backscatter calibration 

reference, ̀ 0
TόʻύΣ constitutes the time invariant backscatter response of a calibration target T. 

Hence, deviations of the recorded backscatter coefficient 0̀όǘΣ ʻΣ ˒b) to the calibration 

reference ̀ 0
Tόʻύ are held to give estimates of calibration anomalies incorporated in the 

calibration coefficient CIAόǘΣ ʻΣ ˒b). In the case of the European C-band scatterometers, 

calibration anomalies can affect particular antenna beams or the entire scatterometer system. 

Consequently, intra-calibration coefficients are determined for each scatterometer antenna 

beam ˒ b separately. Eqn. 5-3 can be solved with respect to the intra-calibration coefficient, 

resulting in realizations of CIAόǘΣ ʻΣ b˒) affected by additive instrument noise ʁ per calibration 

target T as stated in the following. 

 ὅ ȟ ὸȟ—ȟ• „ ὸȟ—ȟ•  „ — Eqn. 6-5 

Calibration target specific intra-calibration coefficients CIA, TόǘΣ ʻΣ ˒b) are deduced for each 

antenna beam of the scatterometer separately, discriminating between ascending and 

descending orbit overpasses by utilizing the corresponding calibration target reference 0̀
Tόʻύ. 

The intra-calibration coefficient is exclusively an attribute of the scatterometer and 

consequently independent of the calibration target T used for determination. Therefore, the 

presented intra-calibration approach makes use of numerous calibration targets for a robust 

determination of the scatterometer related intra-calibration coefficients. Calibration 

coefficients CIAόǘΣ ʻΣ ˒b) are inferred for each antenna beam, per month, as a function of the 
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incidence angle ̒ by fitting a straight line through the target specific coefficients CIA, TόǘΣ ʻΣ ˒b) 

of all employed calibration targets T. Finally, calibrated backscatter observations are derived 

by subtracting the intra-calibration coefficient CIA from the observed backscatter coefficient 
0̀όǘΣ ʻΣ ˒b) to achieve a consistent calibration level of the scatterometer over time. 

 „ ὸȟ—ȟ• „ ὸȟ—ȟ•  ὅ ȟ ὸȟ—ȟ•     Eqn. 6-6 

 

 

 

  

 

Figure 3: ERS-1/2 AMI-WS and Metop-A ASCAT geometry, introducing swaths, beams and nodes. 
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6.3 Azimuthal Normalisation  

In some regions backscatter „  varies strongly with azimuth or look angle, an effect known as 

azimuthally anisotropy. These azimuthal effects are accounted for by applying a polynomial 

correction term to the backscatter values. In this step, the coefficients of the polynomials are 

computed from the backscatter time series. 

In general, the azimuth angle under which a location is seen depends on the beam (fore-, mid- 

or aft-beam), the swath (left or right) and the satellite direction (ascending or descending), 

resulting in 6 azimuth configurations for AMI-WS and 12 azimuth configurations for ASCAT 

respectively. For each of these configurations Ã, the „  - — dependency is modelled as a 

second order polynomial ὴ —. The coefficients of these polynomials are determined by 

fitting the model to all observations falling into the respective configuration category. 

Furthermore, an overall model ὴ — is fitted to all observations, resulting in a total of 3 x 13 

= 39 parameters for ASCAT and 3 x 7 = 21 parameters for AMI-WS respectively. 

During the subsequent steps, a correction bias is applied to each backscatter value „ȟ, 

depending on its azimuthal configuration: 

 ʎȟ N ʎȟ Ð ʃȟ  Ð ʃȟ  Eqn. 6-7 

This approach has been suggested, and is justified and described in more detail in  

Bartalis et al. (2006). 

6.4 Estimate Noise of Backscatter Measurements  

This step initialises the error propagation in the algorithm. It estimates the random noise of a 

single beam measurement „ . This is based on the following observation: all three beams 

observe the same region (soil moisture), and the fore- and aft-beam have the same incidence 

angle. Thus, as long as there are no azimuthal effects, the measurements of the for- and aft-

beam are comparable, i.e., statistically speaking, they are instances of the same distribution. 

Hence, the expectation of the difference: 

 ɿḊ ʎ  ʎ   Eqn.6-8 

should be 0, and its variance should be twice the variance of one of the beams (assuming, the 

measurements are independent): 

 ÖÁÒɿ ς ÖÁÒʎ  Eqn.6-9 
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By taking the square root and re-arranging, this gives us an estimate of the standard deviation 

of „ , which is called estimated standard deviation (ESD, see also Figure 4): 

 %3$ÓÔÄʎ
ÓÔÄɿ

Ѝς
 Eqn.6-10 

whereby ίὸὨ is obtained as empirical standard deviation of  over the whole time series. 

 

 

Figure 4: Global distribution of ESD. 

6.5 Model Incidence Angle Dependence and Vegetation Correction  

The key equation of the model expresses the observed backscatter „ —ȟὸ as a function of 

the incidence angle — at day Ὠ, more precisely as a second order polynomial about the 

reference angle  — τπ  (Wagner et al. 1999b): 

 
„ —ȟὨ  „ — ȟὨ „ — ȟὨ — —

ρ

ς
„ — ȟὨ — —  

Eqn.6-11 

whereby the 0th-order coefficient „ — ȟὨ  is the normalised backscatter at the τπ 

reference incidence angle, and the 1st and 2nd order coefficients „ — ȟὨ and „ — ȟὨ 

are referred to as slope and curvature parameters (see Figure 5). Slope and curvature mediate 

the effect of vegetation on the functional relationship between „  and —: for sparse 

vegetation, the curve tends to drop off rapidly, while for fully grown vegetation, it becomes 

less steep, almost horizontal in the case of rain forest (Figure 5b). In the model, we assume 

that the vegetation state is always the same at the same day of the year, i.e. it does not change 

inter-annually, and is thus a function of the day-of-year Ὠ. Hence, for each GPI, there will be 
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366 vegetation curves, each determined by a slope/curvature pair „ — ȟὨȟ „ — ȟὨ. 

The slope and curvature parameters, which determine, in conjunction with the incidence 

angle, the effect of vegetation on the backscatter, are estimated during this step. 

 

Figure 5: Backscatter as function of the incidence angle. In WARP, it is assumed that an increase in 
soil moisture simply shifts the curve upwards (a), while a change in vegetation affects its shape, i.e., 
higher order moments (b).. 

Slope and curvature are determined as the coefficients of a straight line fitted to the so called 

local slopes. Local slopes are estimates of the first derivative of the  

backscatter - incidence angle dependency, and are computed as difference quotients between 

fore-and mid-beam, and aft- and mid-beam, respectively: 

 ʎ  ʃȟÔ
Ўʎ

Ўʃ
 Eqn.6-12 

To be more specific, each backscatter beam-triple „ȟȟ„ȟȟ„ȟ  (fore-, mid-, and aft-beam 

measurements) taken at incidence angles —ȟȟ—ȟȟ—ȟ  yields two local slope estimates at 

day Ὠ: 

 
ʎȟ  

ʃȟ  ʃȟ
ς

ȟÄ
ʎȟ ʎȟ
ʃȟ ʃȟ

 

 
Eqn.6-13 

 „ȟ 
—ȟ —ȟ
ς

ȟὨ
„ȟ „ȟ
—ȟ —ȟ

 Eqn.6-14 

These local slopes are taken as instances of the first derivative of Eqn.6-15 

 „ —ȟὨ  „ — ȟὨ „ — ȟὨ — —  Eqn.6-15 

The width ̱  of the time window is crucial for the quality of the estimates. A too short time-

window length ̱ yields noisy slope „ — ȟὨ and curvature  „ — ȟὨ estimates, while a 

too long window filters a remarkable part of the vegetation variation resulting in a bias. 
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Moreover, the time-window length ̱  is also dependent on the regional climate. With 

reference to the spatial resolution of scatterometers, it is assumed that vegetation is not 

changing remarkably during a less than 2-week period and the seasonal vegetation change 

does not take longer than 12 weeks. Simulations have been performed to quantify an 

optimum time window length ̱ for different climate regions. It was found that a time window 

length of 6 weeks represents a good balance between noise and bias introduced to the 

estimate of slope and curvature globally. Slope and curvature values are computed by 

employing local slope values located within the fixed time window length ̱ centered at the 

specific day-of-year Ὠ Ὠέώὸ. The regression fit is performed by making use of kernel 

smoother method known as Local Linear Regression utilizing an Epanechnikov kernel. Slope 

and curvature are determined as the parameters of the local linear fit conducted over the 

whole range of incidence angles of the local slopes. Therefore, local slope values are assigned 

with weights according to their distance in time from the evaluation day determined by the 

Epanechnikov kernel. The error variance of the slope ὺὥὶ„ — ȟὨ  and curvature 

ὺὥὶ„ — ȟὨ  parameters is estimated by means of standard linear estimation theory. 

Detailed information about the estimation process of slope and curvature can be found in 

(Melzer 2013). 

 

Figure 6: The effect of the time window size on the slope estimate. 

6.6 Incidence Angle Normalisation of Backscatte r  

Backscatter measurements taken at different incidence angles are not directly comparable. 

Having retrieved the slope and curvature parameters, we can invert the model Eqn.6-15 in 

order to compute from a backscatter measurement taken at an arbitrary incidence angle the 

corresponding value at the reference angle. Letting 
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 ● „ȟ —ȟ„ — ȟὨ ȟ„ — ȟὨ ȟ Eqn.6-16 

we get Eqn.6-17 

 
Ὢ● „ȟ —

„ȟ — „ — ȟὨ ῳ—
ρ

ς
„ — ȟὨ ῳ—  

Eqn.6-17 

Note that we have not included the day of year Ὠ  as parameter of the backscatter „ȟ —  

for several reasons. First, in the model the backscatter for a given day is thought of a function 

of the incidence angle, but not of time. It does depend on time, though not in a direct 

functional sense, but indirectly, through ὨΩǎ ŜŦŦŜŎǘ ƻƴ ǘƘŜ ǎƭƻǇŜ ŀƴŘ ŎǳǊǾŀǘǳǊŜΣ ǿƘƛŎƘ ƛǘ 

indexes. Second, the time parameter can always be retrieved from the time series via the 

index Ὥ, so adding it to the parameter list is redundant. Third, the notation becomes more 

concise. However, we must use Ὠ  as argument to the slope and curvatures parameters, since 

it is used as index into these parameter arrays. 

If we assume that the errors of the normalised backscatter, slope and curvature ς i.e., the 

components of ● - are uncorrelated, the covariance matrix of ● is simply 

 #ÏÖ Ὅ ὉὛὈȟÖÁÒ„ — ȟὨ ȟÖÁÒ„ — ȟὨ  Eqn.6-18 

The Jacobian of Ὢ is obtained as: 

 
Ὢ

●
ρȟɝ—ȟπȢυɝ— Ȣ Eqn.6-19 

Thus, according to Eqn.6-35, the noise variance of the normalised backscatter for beam ὦ is 

Eqn.6-20: 

 
ÖÁÒ„ȟ — ὉὛὈ ÖÁÒ„ — ȟὨ  ɝ—  

πȢςυ  ÖÁÒ„ — ȟὨ  ɝ—  
Eqn.6-20 

Finally, the three beams ς now having been shifted to a common reference angle ς are 

averaged: 

 „ —
ρ

σ
„ȟ —

ᶰ ȟȟ

 
Eqn.6-21 
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The corresponding noise variance is given by 

 ÖÁÒ„ —
ρ

ω
ÖÁÒ„ȟ —

ᶰ ȟȟ

 
Eqn.6-22 

As can be seen, averaging over the three beams has the effect that the variance of the noise 

due to instrument noise, speckle and azimuthal effects is lowered by a factor of three. It does, 

however, not lower the error due to the lack of fit of the slope model (Wagner 1998). 

6.7 Determination of Dry and Wet References  

For a given GPI, the dry „ — ȟὨ  and wet „ — ȟὨ reference are the historically 

lowest and highest normalized backscatter values, respectively, measured at this location at a 

given day d. The dry and wet references are stored as parameter arrays indexed by the time, 

just as slope and curvature.  

The WARP model assumes that the vegetation (i.e., backscatter-vs.-incidence angle) curves 

for dormant and full vegetation intersect, and that the point of intersection depends on the 

soil moisture conditions: the intersection points for the driest and wettest conditions are 

called dry and wet crossover angles, respectively (Figure 7). The wet crossover angle —  is 

at 40 degrees (which is also the reference angle), while the dry crossover angle —  is located 

at 25 degrees (these values have been determined empirically). The importance of the 

crossover angle concept lies in the fact that at the crossover angles, vegetation has no effect 

on backscatter (Wagner 1998).  

 

Figure 7: Cross-over angle concept for vegetation correction. 
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In order to determine the lowest backscatter value irrespective of the vegetation conditions, 

the normalised backscatter measurements are first shifted to the dry crossover angle: 

 
„ —   „ — „ — ȟὨ ῳ—

ρ

ς
„ — ȟὨ ῳ— ȟ 

Eqn.6-23 

with ɝ— — — ȟ, and corresponding noise estimate 

 
ὺὥὶ„ —  ὺὥὶ„ — ὺὥὶ„ — ȟὨ ɝ—   

ρ

τ
ὺὥὶ„ — ȟὨ ɝ— Ȣ 

Eqn.6-24 

Note the similarity to Eqn.6-17 and Eqn.6-20, but in this case, we are not shifting from the 

individual incidence angle to the reference angle, but from the reference angle to the dry 

crossover angle. 

From the resulting empirical distribution, the average of the ὓ ὔ ςzȢυϷ  smallest 

values is used as an estimate of the lowest backscatter value at the dry crossover angle:  

 „ —
ρ

ὓ
 „ — ȟ Eqn.6-25 

whereby ɩ is a permutation that sorts the timeseries in ascending order w.r.t. the backscatter 

values. Since the normalised backscatter values have different noise variances (depending on 

the day and incidence angle of acquisition), there exists no simple general expression for the 

noise variance of the average, but we have (assuming the noise contributions of the 

measurements are uncorrelated): 

 ὺὥὶ„ —
ρ

ὓ
 ὺὥὶ„ — Ȣ Eqn.6-26 

Finally, for each day t, „ —  has to be shifted back to the reference angle along its 

corresponding vegetation curve, in order to obtain  „ — ȟὨ:  

 
„ — ȟὨ   „ — „ — ȟὨ ɝʃ

ρ

ς
„ — ȟὨ ɝʃ  

Eqn.6-27 

The noise is given by 

 
ὺὥὶ„ — ȟὨ    ὺὥὶ„ — ὺὥὶ„ — ȟὨ ɝʃ  
ρ

τ
 ὺὥὶ „ — ȟὨ ɝʃ  

Eqn.6-28 
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This is the final estimate of the noise variance for the dry reference. The estimates for the wet 

reference 

 
„ — ȟὸ   „ — „ — ȟὨ ɝʃ

ρ

ς
„ — ȟὨ ɝʃ  

Eqn.6-29 

(where ɝ— —  —  and its corresponding noise 

 

ὺὥὶ„ — ȟὨ  

  ὺὥὶ„ —  ὺὥὶ„ — ȟὨ ɝʃ  
ρ

τ
 ὺὥὶ „ — ȟὨ ɝʃ  

Eqn.6-30 

are obtained in a completely analogue fashion, but instead of the 2.5 % lowest values at ʃ , 

the 2.5 % highest values have to be averaged at the wet crossover angle ʃ   in order to 

compute „ — . 

It is worth mentioning that due to the selection of the cross-over angles, which are fixed at 

25° for „ and 40° for „  globally, the dry reference is changing over time, whereas 

„ — ȟὨ  is constant (i.e., it does not depend on the day). This is because the wet 

crossover angle is equal to the reference angle, and thus ɝ—  ḳπ (see Figure 8). A global 

map of abovementioned references is given in Figure 9. 

 

 

Figure 8: Example of the dry and wet reference characteristics at a GPI near Salamanca, Spain. 

 




























































