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1 Executive Summary  

This Comprehensive Error Characterisation Report (CECR) gives an overview of all known 

errors of the soil moisture datasets as generated by the ESA CCI Soil Moisture project. This 

report defines the different error characterisation proxies and describes the errors of the 

ESA CCI SM datasets.  Over the years, global soil moisture data from satellite observations 

have been validated with in situ observations. This is a challenging task because there is a 

strong difference in spatial support. Typically, two techniques are used to describe the ESA 

CCI SM skill. One is on the absolute differences (i.e. unbiased Root Mean Square Error, mean 

average error, mean bias) and the other on the relative agreement (i.e. correlation 

coefficients and covariance). The absolute measures assess the effect of random and 

systematic error, and the relative measures check the association of the phasing of the 

separate datasets.  

Other techniques to assess the soil moisture error from coarse-resolution soil moisture 

products are error propagation, triple collocation, and R-metrics.   

An error propagation analysis is a standard error technique and uses the errors of the input 

parameters in a covariance matrix to calculate the errors of the output. This matrix can be 

estimated with a Monte Carlo simulation, or in some cases solved analytically.   

The triple collocation is a technique to estimate the magnitude of the time-variable term of 

soil moisture, but does not address the bias term. This technique can be applied at global 

scale, but three independent datasets are needed with a sufficient long data record (100 

triplets is the minimum boundary, 500 is advised). 

Finally, the R-metric is a tool to quantify the value of soil moisture retrievals. The R-metric is 

based on the notion that an overestimate of the simulated error in rainfall would require 

removal of water and, vice versa, an underestimate of the simulated error in rainfall would 

require addition of water. The water quantity would generally be a function of soil moisture. 

R-metric is a measure of added skill, sensitive to both the accuracy of a soil moisture product 

and the accuracy of a rainfall estimate driving a model-based estimate of soil moisture.  This 

fits in with the notion that measuring the added value of remotely sensed observations 

relative to a reference piece of information is important for assessing the higher-level value 

associated with an assimilated soil moisture product. 

2 Change record 

The content of the report has been revised and updated, reflecting new and additional work 
conducted by the consortium on ESA CCI SM phase 2 product version 03.2. This is Revision 2 
ƻŦ ǘƘŜ ǇƘŀǎŜ н ŘƻŎǳƳŜƴǘ άComprehensive Error Characterisation Report Revision 1 (CECR), 
D2.2.1, Version 1.0έ ό23 June 2016). 
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 The following changes have been made to the document: 

Å Section 5.1: New table added on sources of errors 

Å Section 7.1.1.2: New table added on scatterometer performance 

Å Section 7.1.2.5: Additional information on the WARP software with regards to noise 
error propagation modelling has been added, including new figure on global 
distribution of estimated st.dev due to noise and other effects 

Å Section 7.2.1.4: Geolocation errors text updated with new information, relevant to 
the ESA CCI SM product 

Å Section 7.2.2.1: New figure added under vegetation modelling based on recent 
publication 

Å Section 7.3: List of input datasets considered for generation and validation of merged 
SM product has been added 

Å Section 7.3.3: Short description of merged product error propagation added 

Å Section 7.3.3.1: Additional information on merging passive datasets is given 
(combinations of data overlap and weights) 

Å Section 7.3.3.6: Information of input dataset decision making for the merged product 
(decision tree) has been added  

Å Section 7.3.4: Three new paragraphs outlining studies and results relevant to this 

section have been added 

Å References: 17 new references added to the document citing recent and new 
research 

3 Introduction  

3.1 Purpose of the document  

A key target during Phase 2 of the ESA CCI Soil Moisture is to produce a long-term soil 

moisture ECV dataset for use by the community, in particular by climate scientists and 

weather forecasting agencies. Although these data are not intended to be used in near-real 

time for, e.g., assimilation into NWP (Numerical Weather Prediction) models to produce the 

best initial state for weather forecasts, the quality of these data must be comparable to that 

used by NWP agencies. Thus, validation of the ESA CCI SM product is a key element of Phase 

2. This evaluation will assess and characterise errors and uncertainties in the long-term ESA 

CCI SM product. Furthermore, there is also a need for error characterisation of the Level 2 

products that provide the input to the final ESA CCI product. 

The Comprehensive Error Characterisation Report (CECR) provides a comprehensive 

overview of all known errors of the ESA CCI SM datasets to be generated by the ESA CCI Soil 

Moisture project. A good understanding of all errors is essential to distinguish real trends in 
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the soil moisture time series from artificial trends caused by changes in space 

instrumentation, sensor degradation, and retrieval errors.   

Intensive validation and error characterisation activities have been carried out during Phase 

1 of the ESA CCI SM project and have continued in Phase 2. This document provides a 

reviewed and updated version of CECR Phase 1 [AD-3] and of the first homologous report 

provided in the framework of the ESA CCI SM Phase 2 [AD-4].  CECR is thus intended to be a 

άliving ŘƻŎǳƳŜƴǘέ, which has been updated on a regular basis to account for new theoretical 

insights and validation results. 

3.2 Targeted audience  

This document targets mainly: 

1. Remote sensing experts interested in the retrieval and error characterisation of soil 

moisture from active and passive microwave datasets, and 

2. Users of the remotely sensed soil moisture datasets, who want to obtain a more in-depth 

understanding of the errors. 

 

4 Documents  

4.1 Applicable documents  

[AD-1] ESA Climate Change Initiative Phase 2, Statement of Work, ANNEX L (Soil Moisture), 

ESA Climate Office, CCI-PRGM-EOPS-SW-12-0012. 

[AD-2] Technical Proposal (Part 3) in response to ESA Request for Quotation RFQ/3-

14173/14/I-NB, ESA Climate Change Initiative (GMECV), Phase 2, Earth Observation Data 

Centre for Water Resources Monitoring (EODC) GmbH. 

[AD-3] Comprehensive Error Characterisation Report (CECR), ESA Climate Change Initiative 

Phase 1 Soil Moisture. 

[AD-4] Comprehensive Error Characterisation Report (CECR v1.0), ESA Climate Change 

Initiative Phase 2 Soil Moisture, June 2016. 

4.2 Reference documents  

[RD-1] Soil Moisture Retrieval from Active Microwave Sensors: Algorithm Theoretical 

Baseline Document (ATBD v3.2), ESA Climate Change Initiative Phase 2 Soil Moisture. 
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[RD-2] Soil Moisture Retrieval from Passive Microwave Sensors: Algorithm Theoretical 

Baseline Document (ATBD v3.2), ESA Climate Change Initiative Phase 2 Soil Moisture. 

[RD-3] ECV Production, Fusion of Soil Moisture Products: Algorithm Theoretical Baseline 

Document (ATBD v3.2), ESA Climate Change Initiative Phase 2 Soil Moisture. 

[RD-4] Product Specification Document (PSD), ESA Climate Change Initiative Phase 2 Soil 

Moisture. 

[RD-5] Product Validation and Intercomparison Report (PVIR v1.0), ESA Climate Change 

Initiative Phase 2 Soil Moisture, May 2016. 

[RD-6] Climate Research Data Package (CRDP v1.0), ESA Climate Change Initiative Phase 2 

Soil Moisture, December 2015. 

[RD-7] ECV Validation Dataset (ECVa DS v1.0), ESA Climate Change Initiative Phase 2 Soil 

Moisture, June 2017. 

5 Background  

Soil moisture is a key variable for understanding the hydrological cycle (Severinatne et al., 

2010) and retrievals of this quantity from various observing platforms (e.g. ground-based 

and satellites) provide observational information that helps improve our understanding of 

soil moisture, including testing our understanding of the hydrological cycle as embodied in 

models. It is thus of interest to provide objective quantification of the value of soil moisture 

retrievals, and in particular provide an objective estimate of: (i) the errors in the soil 

moisture retrieval; and (ii) the added value of the observational information compared to 

that provided by a model. 

5.1 Sources of Errors   

Errors have different sources, some of them are related to sensors and scaling, and others 

are more related to the adopted soil moisture retrieval algorithms. A short description of the 

sources of error contributing to uncertainty in the data products is provided in this section. 

For a more detailed description please refer to [AD-3]. Main factors are listed in Table 1. 

 

Table 1 Main sensor, observational, and environmental factors impacting the quality of the ESA CCI 
SM products 

Factor Category Affects active 

(A) or passive 

(P) 

observations 

Impact on soil moisture retrieval How it is handled in ESA CCI SM 

v03.2 + potential recommendation 

for use 

Observation Sensor A,P Shorter wavelengths (higher Preferential use of longer 
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frequency / 

wavelength 

frequencies) are more sensitive 

to vegetation, theoretically 

causing higher errors. Different 

wavelengths have different soil 

penetration depths, and thus 

represent different surface soil 

moisture columns.  

wavelengths when multiple 

frequencies are available. Indirectly 

accounted for by SNR-based 

weighting and indirectly quantified as 

part of the random error estimate 

(see below). The frequency and 

sensor that were used in ESA CCI SM 

are provided as ancillary data.  

Instrument 

errors and 

noise 

Sensor A,P Directly impacts the error of the 

single-sensor soil moisture 

retrieval 

Included in total random error ESA 

CCI SM products assessed by triple 

collocation. Soil moisture random 

error provided as separate variable.  

Local 

Incidence 

angle and 

azimuth 

Sensor A Impacts backscatter signal 

strength and hence retrieved 

value 

Accounted for by incidence angle and 

azimuthal correction in level 2 

retrieval. Remaining uncertainty is 

indirectly quantified as part of 

random error estimate.  

Local 

observation 

time 

Orbital A,P Vegetation water content 

changes during the day (Steele-

Dunne et al. 2012), but this 

variability is not accounted for by 

the retrieval models. Early 

morning observations may be 

influenced by dew on soil and 

vegetation, thus leading to 

higher observed soil moisture. 

Solar irradiation causes 

discrepancies between canopy 

and soil temperatures which 

complicate the retrieval of soil 

moisture (Parinussa et al. 2016); 

ǎŜŜ ŀƭǎƻ ά[ŀƴŘ {ǳǊŦŀŎŜ 

¢ŜƳǇŜǊŀǘǳǊŜέ ōŜƭƻǿ LƴǘǊŀ-daily 

variations because of convective 

precipitation and successive 

evaporation may be missed. 

tŀǊǘƭȅ ŀŘŘǊŜǎǎŜŘ ōȅ ŜȄŎƭǳŘƛƴƎ έŘŀȅ-

ǘƛƳŜέ ǊŀŘiometer observations. 

Remaining uncertainty is indirectly 

quantified as part of random error 

estimate. 

Vegetation 

cover 

Environmental A,P Reduces signal strength from soil 

and hence increases uncertainty 

of soil moisture retrieval 

Included in total random error of ESA 

CCI SM products assessed by triple 

collocation. Dense vegetation is 

masked for passive Level 2 products 

according to sensor-specific VOD 

thresholds: Soil moisture random 

error is provided as a separate 

variable.  

Topography    Environmental A,P Impacts backscatter signal 

strength; causes heterogeneous 

soil moisture conditions within 

the footprint  

Not accounted for. Topography index 

is provided as metadata. A flagging of 

pixels with topography index > 10% is 

recommended. 

Open water Environmental A,P Impacts backscatter and 

brightness temperature signal 

strength 

Not accounted for. Open water 

fraction is provided as metadata. A 

flagging of pixels with open water 
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fraction > 10% is recommended 

Urban areas, 

infrastructure 

Environmental A,P Impacts backscatter and 

brightness temperature signal 

strength 

Not directly accounted for. 

Uncertainty is indirectly quantified as 

part of random error estimate. 

Ice and snow 

coverage 

Environmental A,P Obstructs soil moisture 

information 

Masked using radiometer-based land 

surface temperature observations 

(Holmes et al. 2009) and freeze/thaw 

detection (Naeimi et al. 2012) from 

level 2 algorithms, and ancillary data 

from ERA-Interim and GLDAS-Noah in 

ESA CCI SM production. Flag provided 

as metadata. 

Frozen soil 

water 

Environmental A,P Strongly impacts observed 

backscatter / brightness 

temperaǘǳǊŜǎ ŎŀǳǎƛƴƎ ŀ άŦŀƭǎŜέ 

reduction in soil moisture 

Masked using radiometer-based land 

surface temperature observations 

(Holmes et al. 2009) and freeze/thaw 

detection (Naeimi et al. 2012) from 

level 2 algorithms, and ancillary data 

from ERA-Interim and GLDAS-Noah in 

ESA CCI SM production. Flag provided 

as metadata. 

Dry soil 

scattering  

Environmental A Volume scattering causes 

unrealistic rises in retrieved soil 

moisture (Wagner et al. 2013) 

Not directly accounted for, but 

indirectly accounted for by low 

weight (related to high error) 

received in SNR-based blending. 

Land surface 

temperature 

Environmental P Errors in land surface 

temperature directly impact the 

quality of surface soil moisture 

retrievals 

tŀǊǘƭȅ ŀŘŘǊŜǎǎŜŘ ōȅ ŜȄŎƭǳŘƛƴƎ έŘŀȅ-

ǘƛƳŜέ ǊŀŘƛƻƳŜǘŜǊ ƻōǎŜǊǾŀǘƛƻƴǎΦ 

Remaining uncertainty is indirectly 

quantified as part of random error 

estimate. 

Radio 

frequency 

interference 

(passive only) 

Environmental P Artificially emitted radiance 

increases brightness 

temperatures and, hence, leads 

to a dry bias in retrieved soil 

moisture.  

In the case of multi-frequency 

radiometers, a higher frequency 

channel (e.g. X-band) is used if RFI is 

detected. In other cases, the 

observation is masked. 

 

5.1.1 Instrument -related errors  

The radiometer calibration accuracy budget, exclusive of antenna pattern correction effects, 

is composed of four major contributors: warm load reference error, cold load reference 

error, non-linearities and errors with radiometer electronics [AD-3]. Another source of error 

related to the radiometers is due to geolocation. Geolocation of satellite data is a standard 

part of the post-launch calibration process (Purdy et al., 2006) and gives insight in the 

absolute mapping skill of the sensor. The geolocation error is related to the accuracy of the 

incidence angle, polarisation rotation angle, scan azimuth angle, spacecraft attitude and GPS 

data. Unfortunately, geolocation errors are hard to find in literature and it is not always clear 
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how these errors are obtained. Therefore, geolocation error assessment for different 

satellite sensors (in relation to frequency and bandwidth) is recommended. A final error 

related to the satellite system is the orbital decay, which is the process of prolonged 

reduction in the altitude of a satellite's orbit due to drag produced by the atmosphere due to 

frequent collisions between the satellite and surrounding air molecules. Orbital decay can be 

a serious issue for trend analysis because it can create artificial trends in datasets (Wentz 

and Schabel, 1999).   

Concerning scatterometer-related errors [AD-3], degrading transmitter energy, noise, 

antenna miss-pointing or a degrading satellite altitude lead to inaccuracies in the estimation 

ƻŦ ǘƘŜ ˋ0. Therefore, two calibration strategies are used to monitor the radiometric accuracy 

and the radiometric stability of the instrument. On-board internal calibration is performed to 

compensate for contribution of thermal noise to the backscattered energy and calibration 

pulse measurements to monitor variations of the transmitter power and the receiver gain. 

Hence, this calibration strategy is used to monitor and detect any anomalies of the 

instrument behaviour. External calibration of the instrument is performed to ensure that the 

backscattered energy measured by the instrument is correct (absolute calibration) for all 

incidence angles (relative calibration). External calibration is done in a separate calibration 

mode of the instrument, using ground base transponders. Furthermore, any antenna miss-

pointing can be detected due to accurate knowledge of the transponder location. A second 

external calibration strategy uses natural, distributed targets (e.g. rainforest, ocean or sea 

ice) to monitor or correct for variations according to the incidence angle. This method allows 

relative calibration based on models developed for these natural targets. 

5.1.2 Algorithm -related errors  

AMSR-E was the first widely used passive microwave radiometer to be used for the retrieval 

of soil moisture, therefore several algorithms exist (Njoku and Chan 2006; Paloscia et al., 

2006; Owe et al., 2008; Jackson et al., 2003). Most of these algorithms are based on the 

radiative transfer theory of Mo et al. (1982), who described a simple physically-based model 

that can effectively estimate radiation emitted by the soil surface, even if this surface is 

covered by vegetation. Such radiative transfer models ( -̟ˍ ƳƻŘŜƭǎ) describe the emission of 

microwave radiation from the soil surface as observed from above the canopy. They are 

generally based on several assumptions, which may lead to algorithm-related errors. For 

instance, all radiative transfer-based approaches assume that the land surface temperature 

is the area mean of soil and canopy temperatures. hǘƘŜǊ ƛƴǇǳǘ ǇŀǊŀƳŜǘŜǊǎ ŦƻǊ ˖-ˍ ƳƻŘŜƭǎΣ 

such as the single scattering albedo and surface roughness, lack detailed information, which 

leads to several assumptions.  

Other soil moisture retrieval algorithms are based on neural networks models trained by a 

large amount of input data. The objective of the learning phase is to establish input-output 
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data relationship without any knowledge of the studied phenomenon. The training dataset is 

assumed to be representative of the phenomenon under investigation. However, poor 

accuracy in the training samples can lead to errors in the final products.  

The Water Retrieval Package (WARP) algorithm used for ASCAT processing employs a simple 

semi-empirical model to obtain normalised from raw backscatter values, which are then 

related to the historically lowest and highest normalised backscatter values at a given 

location. The model rests on several assumptions, which, when violated, will result in 

inaccurate or even meaningless soil moisture estimates.  For example, a key assumption is 

that backscatter expressed in dB is an increasing linear function of the soil moisture. 

However, it was observed that in some locations under extremely dry conditions, flat terrain 

and with low incidence angle observations, backscatter may actually increase rather than 

decrease (Prigent et al. 2015). The presence of snow, ice or open water bodies poses similar 

problems. These cases have to be detected and flagged accordingly. 

The above modelling errors are rooted in discrepancy between the real physical processes 

we are interested in, and our incomplete understanding and possibly oversimplified 

description of these processes. A related issue is the noise model, which deals mainly with 

the uncertainty of our knowledge about the physical parameters we want to retrieve. It 

describes how uncertainties in the original measurements transform along the processing 

chain and thus affect the uncertainty of the final product. In WARP, this is done mainly via 

error propagation (see section 5.2.1).  The noise model, like the physical model, has to rely 

on assumptions that may not always hold in practice, but are made to allow for a more 

efficient implementation of the algorithm.  

5.1.3 Scaling Errors  

Soil moisture influences a range of environmental processes in a nonlinear manner leading 

to scale effects that need to be understood for improved prediction of moisture dependent 

processes. Similarly, several spatially and temporally varying environmental processes (e.g. 

hydro-meteorological variables, such as precipitation and evapotranspiration) influence soil 

moisture itself.  

The evaluation of long-term soil moisture data is challenging, mainly because as for any EO 

dataset, ǘƘŜǊŜ ŜȄƛǎǘǎ ƴƻ Ǝƭƻōŀƭ ǊŜŦŜǊŜƴŎŜ ŘŀǘŀǎŜǘ ǘƘŀǘ ƛǎ ǘƘŜ άǘǊǳǘƘέΦ ¢ƘŜ ōŜǎǘ ǊŜŦŜǊŜƴŎŜ 

ŘŀǘŀǎŜǘ ǘƘŀǘ Ŏŀƴ Ǉƭŀȅ ǘƘŜ ǊƻƭŜ ƻŦ ǘƘŜ άǘǊǳǘƘέ ƛǎ ǘƘŜ ŎƻƭƭŜŎǘƛƻƴ ƻŦ in situ measurements of soil 

moisture. Nevertheless, these data will not provide the ultimate answer on the accuracy of 

the satellite-derived soil moisture products, but only an estimate of this accuracy. 

Furthermore, we must address two further difficulties when using in situ data to evaluate 

satellite soil moisture products. First, different measurement depths, depending on 

measurement frequency; microwave sensors sense within 0.5-5 cm, while in situ sensors 
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typically sense at least 5 cm in depth, and often deeper. Second, different spatial footprints; 

microwave sensors, mounted on satellite platforms, sense over areas of order 100s km2, 

while in situ sensors are, essentially, point measurements (the footprint typically extends to 

a few dm2). Moreover, despite the network of soil moisture stations is expanding worldwide 

(see section 6.1), ground measurements are still not available globally. Therefore, we need 

algorithms (e.g., triple collocation, data assimilation) to match the spatial characteristics of 

the in situ and satellite soil moisture datasets and fill in the spatio-temporal gaps in 

coverage. We also need additional reference datasets (e.g., finer spatial resolution SAR-

based soil moisture retrievals, estimates of total water storage changes, analyses from land 

data assimilation systems) to complete and extend the regions of evaluation from the 

locations of the in situ measurement sites. This will provide the information necessary for a 

complete validation of the satellite soil moisture products (e.g. the CCI SM dataset), 

including their error characterisation. 

Recently, significant progress towards operational soil moisture remote sensing products 

was made which resulted in several datasets having global coverage. However, accurate 

estimates of error structures are still needed for these datasets (Scipal et al. 2008). 

Validation against in situ observations is difficult because of the typical mismatch between 

the small support of the point-scale in situ measurement and the large support of remote 

sensing data products [AD-3]. Additionally, several studies showed that uncertainties of 

remotely sensed soil moisture products differ per climate regime. In remote sensing 

applications, as in physically-based modelling of land-surface processes, the representation 

(inclusion) of subgrid-scale variability in coarse resolution data remains a challenge. The 

problem is one of spatial interpolation, upscaling or downscaling. Essentially this is a result 

of the discrepancy between the coarse spatial scales (and often temporal scales) of available 

data and the fine scales necessary for meaningful research and applications. 

In Wanders et al. (2012), the soil moisture mapping accuracy of two passive (i.e. AMSR-E and 

SMOS) and one active (i.e. ASCAT) microwave satellites was evaluated. Satellite soil moisture 

products were compared with the physically-based high resolution SWAP (Soil Water 

Atmosphere Plant) model (Van Dam, 2000; Kroes et al., 2008). An advantage of a physically-

based unsaturated zone models is their capability to represent spatiotemporal variation in 

meteorological forcing, soil parameters and unsaturated zone processes (De Lannoy et al., 

2006; Finke et al., 1996). This enables validation at the spatial resolution of the microwave 

soil moisture products (625ς2500 km2). The SWAP model integrates local information (e.g. 

meteorological stations, soil data) with high spatial resolution (km-scale) remotely sensed 

imagery (e.g., Leaf Area Index). Combining information from these different sources allows 

for upscaling of the high spatial resolution unsaturated zone model to match the spatial 

resolution of the remotely sensed soil moisture product. In Wanders et al. (2012), soil 

moisture over Spain was modelled at a high vertical and horizontal resolution and averaged 
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over the support of each satellite. Semi-variogram models of the errors of all satellite soil 

moisture products for the entire simulation period showed a spatial correlation in the error 

ranging between 100 and 220 km for the three satellites products (Figure 5-1). The 

correlation range, sill and nugget of the variogram are almost equal for all satellite products 

indicating that soil moisture errors have a similar spatial error pattern for AMSR-E, SMOS 

and ASCAT. 

 

Figure 5-1 Semi-variograms of the bin-average time dependent satellite product error calculated for 
three satellite soil moisture products and the SWAP model, from all DGG locations for the period 
January 2010 - June 2011 over Spain (Wanders et al., 2012) 

5.1.3.1 Spatial Scaling issues 

Spatial scaling techniques can be divided into behavioural techniques and process-based 

techniques. Behavioural techniques focus on quantifying the apparent observable behaviour 

of soil moisture patterns as a function of scale and use this quantification to predict the 

effects of changing scale. These techniques rely on data and statistical analysis, which may 

be combined with a conceptual understanding of process controls through the use of 

ancillary data. In contrast, process-based techniques aim for a deeper understanding of the 

physical processes causing the spatial patterns observed in soil moisture. They utilise a 

conceptual understanding of soil moisture process and physics, usually within a 

deterministic reductionist framework of distributed water balance modelling and/or Land 

Surface Model, to predict the effects of changing scale. At small scales, soil moisture 

responds to variations in vegetation (Qui et al. 2001), soil properties (Famiglietti et al. 1998), 

topographically driven variations in lateral flow (e.g., Dunne and Black 1970a, b), radiation 

(e.g., Western and Blöschl 1999), and precipitation. As spatial scale increases, different 

sources of variation become apparent. Variation in vegetation shifts from plant to patch 

scale and then finally to community scales. Soil properties vary as different soil types and 

geomorphological features interact. Variations in rainfall patterns can occur at spatial scales 
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as small as hundreds of meters due to the passage of storm cells (Goodrich et al. 1995); 

however, the long-term effect on soil moisture variability may be observed at larger spatial 

scales as the soil profile stores precipitation over time and thus tends to smooth some of the 

spatial and temporal variations in instantaneous rainfall rates. Obviously, at spatial scales of 

several kilometres, examples of soil moisture variability are evident due to spatial variability 

in event rainfall depth. At still larger scales, climatic variability and variations in precipitation 

depths lead to substantial changes in soil moisture conditions between climate regions. 

Variations in humidity, temperature and radiation also have an effect on soil moisture 

through evapotranspiration processes. All of the factors affecting the distribution of soil 

moisture discussed above are correlated in space to some degree. For example, rainfall 

depth and intensity is likely to be more similar for two points 1 m apart than for two points 1 

km apart. These spatial correlations form spatially correlated soil moisture patterns. Lateral 

redistribution of soil water also increases spatial variation and correlation (Western et al. 

2002). Lateral moisture fluxes present a specific problem and are a soil moisture estimate 

error source for most Land Surface and Hydrological Models applicable on mesoscales. 

Mesoscale models, even if distributed, cannot usually take into consideration lateral 

moisture transport from one computational node to another. Instead, lateral moisture 

transport is usually handled by a separate routing model. In essence, usually this means that 

lateral moisture transport is assumed to exit a Land Surface System, and only exists in a 

stream network (or being routed to one, by the routing model), once it is determined to 

have left a particular cell. 

5.1.3.2 Temporal Scaling issues 

The largest temporal scale feature of a time series is seasonal variation in soil moisture. This 

occurs in response to seasonal changes in the balance between evapotranspiration (ET) and 

precipitation. Overlaid on this seasonal cycle is a series of wetting and drying periods with 

time scales related to storm duration and inter-storm periods, respectively. The rate of 

depletion during drying periods is mainly related to the rate of evapotranspiration and 

drainage divided by the rooting depth. The contrast in the rates of change for increasing and 

decreasing soil moisture is primarily related to differences in flux magnitudes in precipitation 

and evapotranspiration processes (Western et al., 2002). 

Grayson et al. (1997) discuss the theoretical presence of preferred states in the temporal 

distribution of soil moisture. Where ET dominates over precipitation, soil moisture tends to 

be consistently low. Similarly, where precipitation dominates over ET, soil moisture tends to 

be consistently high. This behaviour is a consequence of the bounded nature of soil 

moisture. In many landscapes there is a seasonal shift between these two states. In 

landscapes where there is significant lateral movement of water, this temporal behaviour 

corresponds with a change in controls on the spatial soil moisture pattern from being 
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dominated by local vertical fluxes during the dry state to being dominated by lateral fluxes 

during the wet state. 

5.2 Error Characterisation  Methods  

5.2.1 Error Propagation  

Error propagation is a standard technique for estimating the noise of quantities inferred 

from noisy data. Let  be an actual p-dimensional observation vector. x is 

assumed to be an instance of a p-dimensional random variable, with known covariance 

matrix . We are interested how the covariance transforms under a mapping , i.e., 

given x and f, we would like to know the covariance of y, . If f is a linear mapping of the 

form , then the covariance transforms like: 

 

 T
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whereby denotes the transpose of . 

If, on the other hand, f is a non-linear mapping, we first linearise it by replacing it by its first 
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for the covariance matrix of y under the mapping f.  

Error propagation is a general, conceptually simple and widely used technique for obtaining 

error characterisations.  It only requires that:  

¶ the covariance matrix of the inputs is known, and 

¶ the Jacobian of the transformation that acts on the inputs can be computed. 
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In practice, it is also often assumed that that inputs are uncorrelated (or the correlations are 

negligible), which will simplify the computations involved. In cases where the transformation 

is so complex that its Jacobian with relation to the inputs cannot be obtained, a Monte Carlo 

approach could be employed alternatively (however, this is often computationally 

prohibitive). 

A possible shortcoming of error propagation is that it characterises the error distribution of 

the product solely in terms of its covariance matrix. If the full error distribution is required, 

this could be obtained either empirically using Monte Carlo, or analytically, for example, 

within the Bayesian framework. 

For the individual scatterometer and radiometer products, error propagation schemes have 

been developed, or will be adapted, in the framework of this project (Naeimi et al., 2009; 

Parinussa et al., 2012). However, the propagation of the errors of Level 2 products through 

the ESA CCI SM processing system has so far not been thoroughly addressed and currently 

follows exactly the same scaling and merging scheme of the soil moisture retrievals 

themselves. Particularly, in view of the advances outlined in [AD-2], more sophisticated error 

propagation schemes need to be developed and validated. 

Quality characterisation of the merged product should consider two potential sources of 

errors. Firstly, uncertainties of the original product estimates will be inevitably propagated 

into the merged product while, secondly, additional uncertainties may arise during the 

merging process itself. If we assume that the errors of the individual retrievals have been 

rescaled into an equivalent dynamic range (e.g., that of GLDAS-Noah), and are normally 

distributed and uncorrelated, the error computation can be written as: 
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f
being the partial derivative of merging function f to variable xi. As the expected 

alternative merging schemes are weighted linear combinations of the sensor based soil 

moisture retrievals, it will be quite straightforward to apply (5.5) in the case of steady-state 

conditions. Nevertheless, in the case of gradual trends or breaks (e.g. land cover change) 

more care is needed. 

5.2.2 Standard Statistical Measurements  

The interest in evaluation studies of climatological and environmental model datasets has 

grown rapidly (Willmot and Matsuura, 2005). Such evaluations provide the basic means of 

assessing the performance of models and algorithms. Interest has also arisen in determining 
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which statistical measures should be recommended and how these differ based on an 

application. The commonly used evaluation measures in soil moisture campaigns include 

bias, root-mean square error (or difference), both biased and unbiased, and correlation 

(Brocca et al. 2011; Gruhier et al., 2010; Rüdiger et al., 2009). The evaluation statistical 

measures, which form the basis of current error characterisation of satellite-derived soil 

moisture datasets, are described in this section.  

A clear understanding of standardisation methods is essential to deriving an appropriate 

error evaluation approach. Therefore, typical measures of standardisation (Unit 

Transformation, Linear matching, CDF matching, and SWI computation) are firstly 

introduced. Successively, commonly used measures of absolute difference (RMSE, mean 

average error, mean bias) and of relative agreement (r, r2 and rs and Covariance) between 

the models and the algorithms are introduced and interpreted. It is notable that while the 

absolute measures assess the effect of random and systematic errors, the relative measures 

appraise the association of phasing between separate datasets. Furthermore, relative 

measures usually normalise the absolute measure by dividing it either by the dataset itself, 

or by its variance or standard deviation. In doing so, it makes it spatially comparable and 

independent of the absolute magnitude. 

5.2.2.1 Statistical measures of standardisation 

Soil moisture products can be (i) derived from the remotely sensed datasets, (ii) measured 

in-situ at ground level, or (iii) modelled with the models describing water dynamics and 

water use. This variety of different estimate-retrieval and modelling strategies can result in 

there being notable differences in the represented a) depth, b) spatial extent and c) units. 

Such differences prevent measuring an absolute agreement between the time-series (Brocca 

et al., 2011) and assimilation of the dataset into models (Dee and Todling, 2000). In order to 

minimize the systematic biases in the soil moisture datasets, transformation or 

standardisation methods are usually adopted. These include:  

ω Unit Transformation; the conversion of the dataset values into values of volumetric 

soil moisture, 

ω Linear matching; removing the differences in the mean or in both the mean and 

variance of two time-series, 

ω Cumulative Distribution Function (CDF) matching; a non-linear approach which 

applies mathematical relationships to convert the climatology of one dataset into a 

second dataset, and 

ω Soil Water Index (SWI) computation; an approach that simulates soil moisture at 

deeper layers using an exponential filter. 
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Table 2 suggests which of the abovementioned approaches should be used to remove 

systematic differences caused by scaling, differences in depth and differences in units. 

 

Table 2 Sources of systematic differences between soil moisture datasets and suggested methods for 
their removal. 

Source of Systematic difference Method to remove it 

Differences in scaling CDF matching 

Linear matching 

Differences in depth SWI filter computation 

CDF matching 

Linear matching 

Differences in units Unit transformation 

CDF matching 

Linear matching 

 

5.2.2.1.1 Unit transformation 

Soil moisture products can originate from in-situ measurements, from estimates derived 

from Earth Observation sensors, and models based on water dynamics and water use. This 

can lead to values being expressed in a variety of units.  

The most commonly used soil moisture units are the volumetric units. These express the 

volumetric fraction of water in a given soil depth [m3 water per m3 of soil], or the depth of a 

column of water contained in a given depth of soil [mm water per mm soil]. The volumetric 

fraction ranges between 0 (completely dry) and 1 (full saturation) and is used in a large 

number of soil moisture networks (i.e. OzNet, REMEDHUS or the AMMA) and satellite soil 

moisture products (Advanced Microwave Scanning Radiometer (AMSR-E), Special Sensor 

Microwave Imager (SSM/I)). To convert the brightness temperature retrieved from the 

satellite products to volumetric units, the Land Parameter Retrieval Model developed by 

NASA and the VU University of Amsterdam (LPRM) is used (Owe et al., 2008). 

Soil moisture datasets can also be expressed in relative units, which are commonly used for 

microwave satellite-derived soil moisture products. These present a measure of change in 

the retrieved signal relatively to its maximum dynamic range. An example of such dataset is 

the Earth Resource Satellite (ERS) (Wagner et al., 1999a), the Advanced Scatterometer 

(ASCAT) (Bartalis et al., 2009) and the Advanced Synthetic Aperture Radar ASAR GM (ASAR 
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GM) soil moisture product (Pathe et al., 2009). Backscatter measurements are converted to 

soil moisture estimates by applying the TU Wien soil moisture retrieval algorithm (Wagner et 

al., 1999b), properly adapted to the acquisition sensor.  

Another unit for expressing soil moisture is the Gravimetric Water Content defined as the 

ratio between the mass of water and the mass of dry matter. The gravimetric method is a 

commonly used method for calibration of other indirect measurements. Less common soil 

moisture measures of soil moisture are the Fraction of Saturation and the Plant Available 

Water (PAW). Fraction of Saturation is defined as the fraction to which the pores are filled 

with water. Soil usually contains a pore fraction of less than 0.5. If this fraction is completely 

occupied by water, the soil reaches its maximum soil moisture saturation. A useful definition 

to envision the Fraction of Saturation is defining it as the volume of water to volume of 

voids. PAW represents the portion of the soilΩs water holding capacity that is available to be 

absorbed by a plant. 

The transformation of these units into a comparative format is a critical prerequisite for 

successful evaluation of the soil moisture datasets.  

Volumetric units are becoming standard soil moisture units in Earth Observation (Dorigo et 

al., 2010) and have been selected as the reference standard for unit transformation. Here, a 

set of transformation techniques are presented that serve to transform the introduced soil 

moisture measurement units, to standardised volumetric soil moisture units. 

The conversion of gravimetric soil moisture to volumetric soil moisture is achieved using the 

expression: 

 
w

b

V w
r

r
q = ,  (5.6) 

 

WƘŜǊŜ ˊb ŀƴŘ ˊw represent the dry bulk density and water density respectively, and w 

represents the gravimetric soil moisture value.   

The transformation of PAW to volumetric soil moisture is achieved using the expression: 

 

 W PV PAW qq -=
,  (5.7) 

ǿƘŜǊŜ t!² ǊŜǇǊŜǎŜƴǘǎ ǘƘŜ tƭŀƴǘ !ǾŀƛƭŀōƭŜ ²ŀǘŜǊ ŀƴŘ WP the permanent wilting point. 

Below the wilting point, water is retained by the soil matrix and is not accessible to plants. 

The wilting point depends on soil properties such as soil texture, and varies geographically. 

The conversion of the Degree of Saturation to the volumetric soil moisture is achieved using 

the expression: 
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 sPV Ö=q , (5.8) 

 

ǿƘŜǊŜ t ŘŜŦƛƴŜǎ ǘƘŜ ǘƻǘŀƭ ǇƻǊƻǎƛǘȅ ŀƴŘ V is volumetric soil moisture. It is evident that the 

quality of the conversion strongly depends on the quality of the porosity estimate.  

Soil moisture data retrieved from scatterometers are provided in relative units. These can be 

directly converted to the absolute volumetric units (Mladenova et al., 2010) using the 

following expression: 
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ǿƘŜǊŜ {a ǊŜǇǊŜǎŜƴǘǎ ŀōǎƻƭǳǘŜ ǎƻƛƭ ƳƻƛǎǘǳǊŜΣ ˊb ŀƴŘ ˊs, the dry soil bulk density and density 

of soil particles, ǊŜǎǇŜŎǘƛǾŜƭȅΣ ŀƴŘ ɸr represents the residual soil moisture. For a high quality 

estimate of the volumetric soil moisture also the three ancillary parameters need to be of 

high quality. In the case of only low quality estimates being available, other transformation 

methods need to be used such as CDF or Linear Matching. 

Unit transformation methods do not account for shortcomings of the ancillary data (i.e. 

texture, porosity, and organic matter content). They also do not account for shortcomings of 

the measurement technique itself, and for the differences in scaling and depth of the 

different measurements. To limit the data usage restrictions implied by such shortcomings, 

methods such as Linear Matching and CDF Matching are used. 

5.2.2.1.2 Linear matching 

Because of dissimilarities in the estimate-retrieval and modelling strategy, differences in the 

represented depth and spatial extent of soil moisture occur, leading to different values of 

the mean and variance of the datasets (Dirmeyer et al., 2004). Such differences should be 

removed (Brocca et al., 2011) in order to efficiently carry out a comparative evaluation of 

the distinct datasets. Likewise, removal of any bias is recommended for data assimilation 

techniques (Dee and Todling, 2000), allowing for statistically optimal analysis. To remove the 

differences in the mean and variance a linear matching technique can be used. To remove 

higher order moments, a non-linear Cumulative Distribution Function (CDF) matching 

approach is recommended.  

For linear matching two approaches are commonly used. The first is based on the application 

of a regression equation between two evaluated datasets, minimising the RMSE (RMSD) 
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between the compared datasets, and removing the differences in means (Jackson et al., 

2010).  

A second approach removes differences in both the standard deviation and the mean 

(Brocca et al., 2010). In particular, the matched dataset y is computed using pairs of (xor,i, yi,) 

as follows: 
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,

 (5.10) 

 

where i =1,...,n, n is the total number of elements,  is the mean of all xor,i,  is the mean 

of all yi and x represents the rescaled xor. The formula can be rewritten into a linear form as 

 

 ABxx iori += , ,  (5.11) 

where the local coefficients A and B are defined as 
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and  
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,

=   (5.13) 

 

Here, parameter B mirrors the difference in the variability of the individual datasets, whilst 

parameter A reflects a combination of differences of both the variability and the mean. 

Implicitly, these parameters also refer to different soil types, land cover and climate (Scipal 

et al., 2008). Importantly, the transformed dataset automatically shares the climatology of 

the reference data or model. 

5.2.2.1.3 Cumulative Distribution Function (CDF) matching 

The Cumulative Distribution Function (CDF) is a non-linear approach, which removes the 

differences due to different depth, scaling and calibration by applying mathematical 

relationships that transform the climatology of one into a second dataset. It is performed by 

matching the cumulative distribution functions of two datasets, using a linear or polynomial 

fitting. Depending on the order of the fitted polynomial, equivalent number of moments is 



 

Comprehensive Error 

Characterisation Report, Revision 2 (CECR) 

Version 1.0 

Date 7 July 2017 

 

19 

mitigated. For example, a 3rd order polynomial could correct differences in the first four 

moments (the mean, the variance, the skewness and the kurtosis) (Drusch et al., 2005).  

The actual computation of the CDF function is performed in three separate steps.  

I. The datasets are ranked.  

II. The differences in soil moisture between the corresponding ranks of the two datasets 

are computed. 

III. The observation operators are computed as a polynomial fit between the computed 

differences and the ranked observed soil moisture (Drusch et al., 2005). These 

remove systematic differences between both datasets. Importantly, the observation 

operators are defined by the type of the observations, in particular, by their specific 

statistical properties and distributions (Drusch et al., 2005) 

5.2.2.1.4 Soil Water Index (SWI) computation 

The climate user community has emphasised the importance of a long-term satellite-based 

root zone soil moisture product. As the root zone cannot be directly sampled by the 

microwave sensors, approaches need to be developed that propagate the surface soil 

moisture measurements to the root zone. The Soil Water Index (SWI) is an exponential filter 

able to simulate the soil moisture value at deeper soil layers, on the basis of soil moisture 

measurements of the shallow soil and an exponential profile designed to mimic fluctuations 

in soil moisture over a scale of progressively greater soil depth. The filter relies on the 

analytical solution of a differential equation and assumes that the variation in time of the 

average value of the soil moisture profile is linearly related to the difference between the 

surface and the profile values (Wagner et al., 1999b). In this study the version of the SWI 

introduced by Albergel et al. (2008) is used: 

 

 ()[ ]11 -- -+= nnnnn SWItSSMKSWISWI ,  (5.14) 

 

with the gain Kn at time tn given by:  
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where T is the time length that characterises the temporal variation of soil moisture within 

the root-zone profile, and gain Kn ranges between 0 and 1. For the initialisation of this filter, 
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K0 = 1 and SWI0 = SSM(t0) are used, where SSM is the surface soil moisture given in m3m-3 or 

% saturation. The three parameters involved in defining the exponential filter, namely the 

characteristic time scale, the factor used to define the time period over which the filter is 

applied and the minimum number of measurements used, need to be defined in a way that 

maximises the correlation between the modified satellite data (SWI) and in situ data at 

certain depth. In situ measurements from the International Soil Moisture Network (ISMN) 

and soil data from the Harmonised World Soil Database (HWSD) will be used towards the 

end of Phase 2 of the CCI SM project to find the T-values that best represent specific depth 

intervals [AD-2]. 

5.2.2.2 Measures of absolute agreement 

Measures of absolute agreement are expressed in the units of the original datasets and refer 

to the positive magnitude of the dissimilarity between two variables. The measures outlined 

here provide informative summaries of variable dissimilarities within comparative soil 

moisture datasets. The most frequently used include Mean Absolute Error (MAE) and Root 

Mean Square Error (RMSE), however there also exist other derivative measures, which 

together allow us to explore and ascertain the nature of absolute error associated with 

satellite-derived soil moisture datasets.  

These measures should be interpreted carefully as they are influenced by the mean and 

variance of the datasets. For example, increasing MAE and RMSE can be explained by 

increasing error in the datasets. However, an increase in the mean or variance can also 

potentially contribute to their value.  

A brief summary of the current measures of the absolute agreement is provided in the 

following sections. It should be highlighted that prior consideration of pre-processing steps 

should always accompany the use of the absolute measures. For example, it is of limited use 

to characterise bias in applications where data matching is applied, given that matching 

removes the difference in the mean and variance. 

5.2.2.2.1 Mean Absolute Error (MAE), Mean Bias Error (MBE), Mean Percentage 

Error (MPE) 

The Mean Absolute Error (MAE), the Mean Bias Error (MBE), and by extension, Mean 

Percentage Error (MPE) are absolute measures of error, and do not normalise the final 

result. The Mean Absolute Error (MAE) of a sample of n measurements is expressed as: 
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where xi and yi are two continuous variables with yi being the representation of the true 

value. The measure returns the average absolute magnitude of each difference. If it is 

necessary or useful for the specific application to know the positive or negative nature of the 

error, the Mean Bias Error (MBE) should be considered: 
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  (5.17) 

 

where xi and yi are two continuous variables with yi being the representation of the true 

value.  MBE should be interpreted cautiously (Willmott and Matsuura, 2005), as it indicates 

the average model bias. For example, two independent datasets with the same mean can 

result in an MBE approaching zero.  

The MBE can be also expressed in a percentage format, providing the Mean Percentage 

Error (MPE) through the formula: 
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for n samples, where xi and yi are two continuous variables, and yi is the representation of 

the true value. In contrast to MAE and MBE, MPE is non-dimensional in nature, expressing 

error without the constraints of units. 

5.2.2.2.2 Root Mean Square Error (RMSE) and Root Mean Square Difference (RMSD) 

Root Mean Square Error (RMSE) is currently the most commonly used absolute measure of 

accuracy, in the case of unbiased or matched datasets, and precision. It has been used in 

previous evaluation studies of soil moisture datasets (Jackson et al., 2010; Doubková et al., 

2012; Draper et al., 2013). RMSE signifies the closeness of two independent datasets 

representing the same phenomenon, one of which represents the true set of values. In the 

situation where none of the independent datasets are assumed to be true, the term Root 

Mean Square Difference (RMSD) is applied instead. In soil moisture comparative evaluation 

studies, the reference dataset is typically represented by the in situ measurements. 

However, such data only reflect a point-scale portion of the soil condition, whereas satellite 

or model-retrieved soil moisture products provide soil moisture information at coarser 

spatial resolutions. Therefore, ground measurements cannot be considered as the "truth", 

and the term RMSD should be used rather than RMSE. In this sense, RMSD provides 
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information about the data precision, but not about their accuracy. Both measures are 

defined for two continuous variables xi and yi as follows: 
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  (5.19) 

 

where i = 1, ΧΣ n and n is the maximum number of measurements. Both RMSE and RMSD 

alter the magnitude of each difference through its squaring and subsequent rooting. The 

squaring is performed to remove the potential negative value. However, this has the 

potentially negative consequence of quadratically penalising the bias between parameters.  

It should be noted that RMSE and RMSD reflect not only the average error but also the 

variance in the error and the number of data point (Willmott and Matsuura, 2005), i.e. they 

become increasingly larger than the Mean Absolute Error (MAE) as the distribution of the 

error magnitudes becomes more variable. To assess the scale-less performance of RMSE, the 

central tendency in RMSE needs to be removed. This can be achieved by its normalisation 

with y , the mean of yiΩǎΣ ŀǎ ŦƻƭƭƻǿǎΥ 

 

 nRMSE or 
y

RMSE
nRMSDm =  (5.20) 

 

The final measure gives an estimate of the averaged, quadratically penalised, difference 

between two datasets normalised by their mean. The use of nRMSEm (nRMSDm) allows for 

spatial comparison as it is not affected by its central tendency. Nevertheless, it does not 

remove the effect of the error variance, which has been highlighted as complicating the 

actual interpretation of RMSE (Willmott and Matsuura, 2005). This may be solved by 

introducing an independent estimate (nRMSEs) that uses the standard deviation to mitigate 

the error variance as follows: 

 

 nRMSEs or 
()ystdev

RMSE
nRMSDs =   (5.21) 

 

Furthermore, it is also worth considering that RMSE, unlike MAE, quadratically penalises 

errors and reflects their variance. For these reasons, MAE has been recommended by several 

studies as a more suitable measure of average error than RMSE (Willmott and Matsuura, 
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2005). To keep consistency with the existing evaluation studies, it is recommended to 

compute and compare both the RMSE as well as the MAE. This could be extended to involve 

a quantification of the difference between the MAE and the RMSE, which may be used as an 

additional evaluation measure providing information on the variance of the errors. The 

smaller the difference between the RMSE and the MAE the better the potential of the RSME 

to represent the average error and the less it is affected by variance in the errors. 

5.2.2.2.3 Covariance 

Another absolute measure, the covariance, assesses the type and level of association 

between two continuous variables xi and yi. The calculation and use of covariance forms an 

integral part in the subsequently outlined errors of relative agreement, for which a brief 

outline has been included here. Essentially, covariance measures how much two random 

variables change together. The covariance for i = 1, Χ, n and n, the number of measurements 

(or sample size), is defined as: 
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where x  is the mean of all xi, y  is the mean of all yi.  

Covariance is an absolute measure in the sense that the values are not standardised, and are 

dependent on the chosen scale. When xi and yi vary independently, the separate parameters 
( )yyi - and ( )xxi - may be independently positive or negative. This can potentially result in 

their mutual cancellation, and therefore a very low covariance value. In contrast, high 

dependency of the dataset would cause correspondence in positivity/negativity, thus 

increasing the final covariance value. 

5.2.2.3 Measure of Relative Agreement 

In many cases, information pertaining to the nature of the association between two 

variables, and not solely the nature of their dissimilarity, is required. To extract such 

information, we use measures of relative agreement, assessed using correlation statistics. 

Relative agreement refers to the potential existence and strength of an association between 

two variables. Outlined here are two correlation measures, which serve to convey 

information about such associations; namely the Pearson Product-moment Correlation 

Coefficient (r), used when the variable datasets are parametric in nature, and the Spearman 

Rank Correlation Coefficient (rs), for datasets which are non-parametric in nature. 

5.2.2.3.1 Pearson Product-moment Correlation Coefficient (r) 
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A dimensionless covariance, the Pearson correlation coefficient (r), is retrieved by division of 

the covariance by two standard deviations stdev(x) and stdev(y): 
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where *x represents the standard normal random variable for which 0* =x  and 

( ) 1* =xstdev . The same applies for *y . This can be further expanded by incorporating the 

formula for covariance (5.22), and the definition of standard deviation for variables xi and yi 

producing:  
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where x  is the mean of xi and y  is the mean of yi. The achieved r value can lie between 1 

and -1, which indicate a perfect positive and perfect negative correlation, respectively. A 

perfect positive correspondence is achieved if the variation in xi is fully explained by the 

variation in yi. The coefficient r effectively provides a measure of how well the two datasets 

are associated in their phasing. 

To obtain a more meaningful interpretation of r it is useful to compute its square (r2). Known 

as the coefficient of determination, r2 represents the proportion of total variation in yi that 

can be attributed to a linear relationship with corresponding values in xi, and is expressed as:  
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 (5.25) 

 

where 0b  and 1b represent the maximum likelihood estimate for the intercept and slope, 

respectively, as computed between the pairs (xi, yi).  In a perfect correlation (where r = +1 or 

r = -1) variation in one of the variables is exactly matched by a corresponding variation in the 

other. The parameter 1-r2 indicates the extent to which other factors (outside xi and yi) are 

influencing xi and yi. 
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If the statistical significance of the correlation is known, r and r2 can quantify its strength. 

However, if the significance is unknown, r and r2 are rather poor statistics to gauge this 

strength. Furthermore, as both r and r2 do not factor in the potential effects of x and y 

ŘŀǘŀǎŜǘΩǎ ƛƴŘƛǾƛŘǳŀƭ ŘƛǎǘǊƛōǳǘƛƻƴǎΣ ŎƻǊǊŜƭŀǘƛƻƴ ŎƻƳǇŀǊƛǎƻƴ Ŏŀƴ ōŜ ƻōǎǘǊǳŎǘŜŘΦ ¢ƻ ǇǊƻǾƛŘŜ 

information addressing these issues, an additional auxiliary test must be performed to 

ascertain the significance level of r (or r2).  

For a small number of samples and for cases when data follow bi-normal or two-dimensional 

Gaussian distribution around their means, the following statistic: 
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ƛǎ ŘƛǎǘǊƛōǳǘŜŘ ŀǇǇǊƻȄƛƳŀǘŜƭȅ ƭƛƪŜ ǘƘŜ {ǘǳŘŜƴǘΩǎ t-distribution, in cases of zero correlation 

(r0=0) with n-2 degrees of freedom and n equal to the total number of measurements. Thus, 

as a final step, this null hypothesis is tested by comparing the t with t-table tail probabilities 

for an appropriate significance level. The measure is widely used in the analysis of soil 

moisture data (Reichle et al. 2004), being applicable both spatially and temporally, whilst an 

excellent overview of the measure and its variations has been compiled by Rogers and 

Nicewander (1988). 

5.2.2.3.2 Spearman Rank Correlation Coefficient (rs) 

When soil moisture data are non-normally distributed, nor is this achievable by 

transformation, the non-parametric rank correlation known as Spearman Rank Correlation 

(rs) may be used (Vachaud et al., 1985; Cosh et al., 2004). This is also useful when assessing 

the spatial stability (Cosh et al., 2004) and temporal stability (Martínez-Fernández and 

Ceballos, 2005) of the soil moisture field. The measure uses the ranks of the xi and yi 

variables in the place of raw data values, which become the basic data used in the 

correlation test. The coefficient rs is calculated using the expression: 
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where n is the number of sample units, and d is the difference between ranks. Whilst rs 

provides a good indicator of whether the correlation is strong or weak, it must be checked 
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against the set of known critical Spearman Rank Correlation Coefficient values. This 

ascertains the likelihood that the value obtained arose by chance in the sample of n units. 

5.2.3 R-Metrics 

Crow (2007) introduces the R-metric as a tool to quantify the value of soil moisture 

retrievals. The R-metric is based on the notion that an overestimate of the simulated error in 

rainfall would require removal of water and, vice versa, an underestimate of the simulated 

error in rainfall would require addition of water. The water quantity would generally be a 

function of soil moisture. Crow (2007) translates this notion into equations that provide 

predictions by using the Kalman Filter equations (e.g. Nichols, 2010), with the control 

variable (the variable updated in the model) being the antecedent precipitation index (API) 

and the assimilated variable being soil moisture (these are the observations input into the 

assimilation scheme). The Kalman Filter (KF) equations are: 
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In the Kalman filter equations above, the first equation represents the forecast of the model 

fields xf from time-step n-1 to n (updating the previous analysis xa), while the second 

equation calculates the forecast error covariance Pf from the analysis error covariance Pa 

and the model error covariance Q. The third and fifth equations are the analysis steps, using 

the Kalman gain K defined by the fourth equation. Q and Pa are assumed to be uncorrelated 

(e.g. Bouttier and Courtier 1999). For optimality all errors (R, observations; Pf, forecast; Q, 

model) must be uncorrelated. In the above equations, the observation operator H and the 

model operator M are assumed linear. The Extended Kalman Filter (EKF) is an extension of 

the original, where the observation and model operators are non-linear (see Nichols, 2010). 

The superscript T denotes the transpose of a matrix.  

The key relationship in the R-metric formulation is between API and soil moisture, and this is 

provided by the third equation in the Kalman Filter suite (5.28) that updates the model 

forecast to provide the analysis. API after and before updating is represented by xa and xf, 

respectively, while soil moisture is represented by y. In the Crow (2007) formulation the 

observation operator as applied on API (before updating) is calculated as a least squares 
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regression line (slope b, intercept a) for the observed long-term relationship between API 

and soil moisture retrievals (represented by qRS), and is written: Hxf = a+bxf. The difference 

between the model forecast xf and the analysis xa (xa ς xf) is the increment, and includes the 

difference between the observation assimilated and its model counterpart (y ς Hxf); this 

difference is called the innovation, and plays a key role in data assimilation (Talagrand, 

2010). In the formulation by Crow (2007), the innovation is written: qRS ς a ς bAPI-, where 

API- is the API before updating (this is xf in the Kalman Filter equations above). In the Crow 

(2007) formulation xa is API+ (API after updating). In Crow and Zhan (2007), a number of 

steps are outlined for optimising error in soil moisture (R) and the model error (Q) such that 

the time series of the innovations are serially uncorrelated and has a second moment equal 

to 1. 

Translating the third equation in the Kalman Filter suite of equations into the R-metric 

formulation by Crow (2007), a rainfall error overestimate is associated with a negative 

increment and a rainfall error underestimate is associated with a positive increment. In both 

cases, one expects a negative correlation between these quantities (rainfall error and the 

increment). The rainfall errors are calculated as the difference between currently available 

global precipitation products from satellites and higher quality rain gauge products available 

only in data-rich areas of the globe. 

The R-metric introduced by Crow (2007) (Rvalue) thus considers the negative correlation (R) 

between the bias in the rainfall error and the increment, and is defined as the negative of 

this correlation, Rvalue = -R. The central hypothesis of the R-metric method is that the 

magnitude of the negative correlation R can be used as a proxy for the overall information 

content of remotely sensed surface soil moisture in global land surface modelling 

applications. 

The R-metric approach needs the following inputs: 

¶ Soil moisture retrieval from a satellite, 

¶ Rainfall data from one or more satellites; these data are commonly used to drive a 

land surface model for API (see below), 

¶ Long-term, preferably multi-year, rainfall data from a network of rain gauges; these 

data are commonly used as a benchmark to assess rainfall errors, and 

¶ A land surface model, e.g., for API. For example, one could define a simple 

relationship for the API for day i as follows: APIi = gAPIi-1 + Pi, where Pi is satellite-

based precipitation and g is the API loss coefficient (see eq. (1) in Crow, 2007).   

The R-metric approach is tested in Crow (2007) using a synthetic twin experiment (see, e.g., 

Reichle et al., 2002, for a discussion of twin experiments in data assimilation), This test 

establishes that the Rvalue metric is a well-defined function of both the underlying accuracy of 

soil moisture retrievals and the quality of rainfall observations used to calculate model-
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based soil moisture estimates. As discussed in Crow (2007), this interpretation is not 

affected by errors in benchmarking the rainfall information, temporal gaps in soil moisture 

retrievals or errors in model parameters. 

In Crow (2007) the R-metric approach is tested for real datasets concerning the added value 

of various remote sensing soil moisture products for land surface modelling applications. The 

results show that Rvalue provides an effective proxy for the accuracy of soil moisture 

retrievals. These results also show that as the accuracy of satellite-based global rainfall 

products increases, it becomes increasingly difficult to contribute added value to model-

predicted soil moisture. Finally, larger Rvalue coefficients can be interpreted as reflecting 

higher accuracy in soil moisture retrievals and greater value for land surface modelling 

applications. The information provided by the Rvalue coefficient can thus be used to optimise 

soil moisture retrievals. 

The positive results reported in Crow (2007) have two caveats: (i) the results presented on 

Rvalue are based on a very simple API land surface model, and(ii) the approach is intended to 

complement, not replace, traditional validation techniques based on using soil moisture 

ground-based networks to evaluate remotely sensed (i.e., satellite) soil moisture 

observations. Addressing the first caveat by using a physically-based, more realistic land 

surface model would allow consideration of a wider range of model errors, and not simply 

the impact of precipitation uncertainty. However, increased modelling complexity also 

brings increased ambiguity regarding the interpretation of the data assimilation results, a 

need for a more complex data assimilation approach and, ultimately, increased technical 

difficulties for adoption of the R-metric method by users. 

Improvements in the approach described in Crow (2007) have been implemented in two 

papers by Crow and Zhan (2007) and Crow et al. (2010a). In Crow and Zhan (2007), the 

approach is extended geographically from limited domains over the continental USA to the 

entire continental USA, and extended by sensor type by considering microwave 

scatterometer and thermal remote sensing, as well as passive microwave radiometry. In 

Crow et al. (2010a) the approach by Crow (2007) is applied with two changes: (i) anomalies 

instead of absolute values are considered, and (ii) a Rauch-Tung-Striebel (RTS) filter (Rauch 

et al., 1965) is applied instead of the Kalman Filter. This approach is applied on anomalies of 

precipitation and soil moisture, and follows the notion that for many land data assimilation 

applications, a more important reflection of the value of soil moisture observational 

information is skill with regard to detecting soil moisture anomalies relative to the annual 

cycle. The use of the RTS filter takes account of the non-real-time nature of the Rvalue 

methodology (i.e., we are not interested in short-term forecasts as in Numerical Weather 

Prediction), and the advantages of implementing a smoothing technique (as is the case for 

the RTS filter, but is not for KF) in which model predictions are updated by both past and 

future observations. 
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As emphasised in Crow et al. (2010a), the Rvalue approach is intended to supplement, and not 

replace, more traditional soil moisture evaluation activities based on ground-based soil 

moisture networks. As noted in Crow (2007), the Rvalue metric is blind to bias and/or dynamic 

range errors and provides only a measure of skill with regard to change detection. While 

such change detection is often cited as the key contribution of remotely sensed soil moisture 

for many data assimilation activities (see, e.g., Crow et al., 2005; Reichle et al., 2008), it is 

not the only metric by which soil moisture products should be evaluated. In particular, bias 

and root-mean-square error (RMSE) calculations must be made versus ground-based 

observations or through the implementation of an alternative technique designed to recover 

RMSE information. Finally, the Rvalue metric is best interpreted as a measure of added skill, 

sensitive to both the accuracy of a soil moisture product and the accuracy of a rainfall 

estimate driving a model-based estimate of soil moisture.  This fits in with the notion that 

measuring the added value of remotely sensed observations relative to a reference piece of 

information is important for assessing the higher-level value associated with an assimilated 

soil moisture product. 

Recently, Parinussa et al. (2011a) cross-verified Rvalue evaluation results with those of the 

Triple Collocation (TC) verification technique (see, e.g., Dorigo et al., 2010, for its application 

to soil moisture observations). Essentially, Rvalue and TC should contain the same information 

if both evaluation procedures are operating correctly (Entekhabi et al., 2010). Parinussa et 

al. (2011a) compared both performance metrics on a global scale taking every single 

terrestrial climate system into account, and showed that Rvalue and TC are strongly correlated 

(R2=0.90). The high mutual consistency between TC and Rvalue was shown to break down at 

extreme vegetation levels such as deserts and rainforest. This breakdown was due to a lack 

of variation in the Rvalue suggesting that Rvalue may saturate at extreme conditions. Desert 

areas have only few precipitation events, and for these conditions the Rvalue verification 

technique is likely to require sampling across a large number of such events and may, 

therefore, lose sensitivity in very arid climate regions. For heavily vegetated conditions (e.g. 

rainforest), the deviation could be explained by the fact that the soil moisture signal 

becomes almost entirely masked due to the overlying canopy. When these two extreme 

vegetation regions were masked, the correlation coefficient between the two evaluation 

techniques was higher (R2 =0.95). This high level of consistency between the R-metric (Rvalue) 

and TC techniques lends confidence to their interpretation as robust evaluation metrics for 

soil moisture retrievals. 

5.2.4 Triple Collocation  

5.2.4.1 Theoretical Overview 

The validation of soil moisture products is intrinsically limited by the lack of knowledge of 

ǘƘŜ άǘǊǳǘƘέΥ ǘƘŜ ŀŎǘǳŀƭ ǾŀƭǳŜ ƻŦ ǘƘŜ ǇŀǊŀƳŜǘŜǊ ǘƻ ōŜ ŘŜǘŜǊƳƛƴŜŘ ƛǎ ƴŜǾŜǊ ƪƴƻǿƴ ǿƛǘƘ 
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absolute certainty, and spatial as well as temporal mismatches often exert a confounding 

influence. The triple collocation (TC) ǘŜŎƘƴƛǉǳŜ ŘƻŜǎ ƴƻǘ ǊŜǉǳƛǊŜ ǘƘŜ ǎǇŜŎƛŦƛŎŀǘƛƻƴ ƻŦ ŀ άǘǊǳŜέ 

reference dataset and permits the estimation of the error variance of each sensor, provided 

that certain assumptions about the error structure are met (Zwieback et al., 2012b). Its 

popularity has grown considerably over the last decade. The method was introduced by 

Stoffelen (1998) in order to study the error characteristics of wind vector data derived from 

a model, buoy measurements and scatterometer observations. The triple collocation 

technique has been used in several studies to assess the quality of soil moisture estimates 

from models, in-situ data and remote sensing products (e.g. Scipal et al., 2008a Dorigo et 

al., 2010; Miralles et al., 2010; Loew and Schlenz, 2011; Parinussa et al., 2011b; Gruber et al., 

2013). 

TC assumes that there are three independent sets of measurements describing the same 

phenomenon, in our case variations in soil moisture over a specific location. In addition, we 

assume soil moisture measured by sensor m at time t ( t

mq ) is linked to unknown true soil 

moisture tq by an additive bias term h and a multiplicative bias term b together with a 

random error e: 

 

 eqbaq +Ö+= tt

meas      (5.29) 

 

The aim of the TC technique is to provide an estimate of the variance of e. Assumptions 

regarding the statistical characteristics of the error terms are crucial for the validity of the 

collocation technique, so we presuppose that: 

1. The correlations between the errors of different sources at the same time step are 0, 

i.e. zero cross correlation,  

2. The correlations between errors at different time steps of the same dataset are 0, i.e. 

zero autocorrelation, and 

3. The three datasets exhibit a linear relationship. 

To meet these conditions, we can use three independent data sources describing soil 

moisture, e.g. a radiometer-based, a scatterometer-based, a TIR based and a model or in-

situ dataset. The three datasets are linked to the true soil moisture in the following way: 

 

 1111 eqbaq +Ö+=  (5.30) 

 2222 eqbaq +Ö+=  (5.31) 

 3333 eqbaq +Ö+=
 (5.32) 
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In a second step, one of the datasets is defined as the reference dataset. The other datasets 

can be transformed into the data space of the reference dataset using, e.g. a linear 

regression method or CDF-matching. 

 

 11 eqq +Ö=  (5.33) 
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The fitting parameters h1, 1̡, 2h and ̡ 2 only represent the additive and multiplicative bias 

between the particular dataset and the reference dataset. The random errors are still the 

true errors but also expressed in the data space of the reference dataset. As the 

multiplicative biases ̡ are known, an inverse transformation back into the data space of the 

particular datasets would be possible, but a reasonable comparison of the errors requires 

them to stay in the same data space. 

Assumed that the assumptions of uncorrelated errors are fulfilled, the random error can 

then be calculated by cross-multiplying the values and taking the average of an appropriate 

number of samples: 
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(5.43) 

 

In order to meet the statistical requirements, a sufficiently large number of observations is 

crucial. Zwieback et al. (2012b) showed that for a relative uncertainty of 10% (i.e. the 

standard error relative to the quantity of interest) 500 samples are needed (Figure 5-2).  

 

 

Figure 5-2 Estimated variance as function of the number of samples N, based on a synthetic dataset. 
The solid lines indicate the ±2 SE range around the actual value (Zwieback et al., 2012b). 

 

Results from Phase 1 indicate this number is attainable for model and in situ data. The 

satellite microwave datasets constitute a limitation in this respect, especially for areas with 

dense vegetation cover, or with snow cover/frozen conditions over part of the year. 

Therefore, several authors adopted a pragmatic threshold of 100 observations 

(e.g. Dorigo et al., 2010; Scipal et al., 2008). 

5.2.4.2 Application and interpretation of output 

The result oftriple collocation is an estimate of the error variance. Thus, the results do not 

provide information on the absolute deviations as expressed by bias and RMSD. It was stated 

ŀōƻǾŜ ǘƘŀǘ ƛƴ ŀōǎŜƴŎŜ ƻŦ ǘƘŜ ǊŜŀƭ άǘǊǳǘƘέ ƻƴŜ ƻŦ ǘƘŜ ǘƘǊŜŜ ŘŀǘŀǎŜǘǎ ƛs chosen as a reference 

to which the other datasets are rescaled. Hence, errors of all datasets are expressed in the 

dynamic range of the reference dataset. The choice of the reference dataset affects the 

absolute values (and in some cases the unit) of the errors but does not influence the relative 

magnitudes of the datasets with respect to each other.  

TC can be applied either to the original retrieved soil moisture values (e.g. Scipal et al., 2008) 

or to the anomalies from the long-term predicted values (seasonalities) (e.g. Dorigo et al., 
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2010). While using original values provides information on the capability of the soil moisture 

products in representing general temporal patterns of soil wetting and drying, the anomaly-

based approach gives us more accurate information on the ability of the different datasets 

to capture single events of drying and wetting (e.g. due to rainfall). As a consequence, the 

anomaly-based approach tells us less about absolute deviations between datasets, e.g. like 

induced by a deviating seasonality. As it is the most commonly used in the literature (Dorigo 

et al., 2010; Miralles et al, 2010; Parinussa et al., 2011b), the anomaly-based approach for TC 

has been used for the validation of the CCI SM product. Obviously, it is critical to compare 

the coarse scale land surface model and remotely sensed data with point in-situ 

measurements as the obtained errors will also contain scaling errors (Miralles et al., 2010). 

Furthermore, the three datasets may show different temporal sampling intervals. Hence, 

errors may slightly inflate due temporal collocation discrepancies. Spatial divergences may 

also occur in a vertical direction as measurements represent different sampling layers. 

5.2.4.3 Recent advances in soil moisture triple collocation analysis 

To date, triple collocation analysis is one of the most important methods for the global-scale 

evaluation of remotely sensed soil moisture datasets. Since its development, many studies 

have been carried out to investigate the limitations of TC analysis, most of which are related 

to violations in the underlying assumptions that are made on the structural properties of the 

considered datasets. Such assumptions are often considered to be unique to the TC method, 

yet most of them are also implicitly made in the application of conventional performance 

metrics. A recent study by Gruber et al. (2016a) provides a comprehensive discussion of the 

assumptions made for TC analysis and the impact of possible violations. The authors also 

demonstrate the similarity between assumptions that are made for TC analysis, and those 

made for the most important alternative performance metrics such as the linear correlation 

coefficient and RMSD. 

The TC hypothesis of linearity between the signal and errors assumes the presence of 

additive and multiplicative biases as well as additive zero-mean random noise, and only 

zeroth- and first-order relationships to soil moisture. While the covariance notation implies 

such linear model by definition (Gruber et al., 2016a), several studies have attempted to 

apply a non-linear model to the difference notation by using non-linear rescaling techniques 

such as the CDF matching. However, common non-linear methods will fail in matching the 

underlying soil moisture signal unless the signal-to-noise ratios (SNR) of the datasets are 

equal (Drusch et al., 2005; Yilmaz and Crow, 2013). As a consequence, a bias in the TC error 

estimates can be verified.  

In TC analysis, both the soil moisture signal and random errors are assumed to be stationary. 

Such hypotheses are very unlikely to occur for soil moisture datasets, as rainfall and 

temperature patterns show a distinct seasonal pattern in most regions of the world, which 
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results in a distinct climatology in soil moisture records. The climatology of the three used 

datasets can differ due to the different spatial support or because the data are affected by a 

systematic error in capturing the seasonal pattern. Differences between the climatologies of 

the datasets manifest as nonlinearities between them. These nonlinearities are of significant 

importance as they might occur at different time scales (Drusch et al., 2005; Su and Ryu, 

2015). Consequently, their correction would involve multi-scale rescaling (Su and Ryu, 2015). 

In particular, time series from individual datasets can be decomposed into variations 

occurring at different timescales, and linear inter-data relations have to be treated at 

individual time scales separately. As an alternative, many studies attempt to tackle the root 

of the problem by individually removing the climatology of the datasets directly, that is 

transforming the observations into the anomaly space (Stoffelen, 1998; Miralles et al., 2010; 

Crow et al., 2012; Draper et al., 2013). However, this requires a reliable estimation of the 

climatology, which is susceptible to estimation errors and to the chosen length of the 

intervals over which temporal averages are taken. 

Assuming error stationarity in TC analysis requires that the error variance remains constant 

throughout the several years of observations and, more importantly, between different 

seasons. A violation of this assumption does not harm the reliability of the estimated 

average random error variance per se, but it limits its representativeness for particular 

subsets of the considered time period (Gruber et al., 2016a). Therefore, a time-variant 

characterisation of errors might be beneficial for a large variety of applications (Crow et al., 

2005). An error estimate that is dominated by large off-season errors would lead to wrong 

judgement of the quality of the dataset under consideration. Recently, Loew and Schlenz 

(2011) proposed a dynamic TC approach to obtain continuous fortnightly TC error estimates 

by applying TC analysis within 30-day windows centred over all fortnightly periods, 

respectively. However, the very short time period considered in this approach leads to an 

extremely low sampling density and thus to very low precision estimates (Zwieback et al., 

2012b). Note that such a window-based approach can potentially account for time-variant 

biases between the datasets due to different underlying climatologies. If, by contrast, such 

time-variant biases are not accounted for, deviations between the different soil moisture 

datasets will tend to persist over time. They are thus closely related to temporal auto-

correlations of the errors (Zwieback et al., 2013). The latter will reduce the precision, but not 

the consistency of the estimated error variances (Zwieback et al., 2013). An alternative 

approach to deal with non-stationarity is to estimate multi-annual window-based error 

variances for each day of the year (Su et al., 2014a). However, this approach reduces the 

sampling density significantly as compared to a classical implementation, which could also 

reduce the precision of the estimates. Therefore, most studies rely on annual error variance 

estimates based on a large sampling density rather than on less precise seasonal estimates 

whose sampling uncertainties might exceed their actual inter-annual variability. 
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The assumption of error orthogonality (i.e. the errors are independent from the true soil 

moisture signal) is commonly made in TC analysis. However, its validity has not been 

sufficiently investigated. The first study on this assumption was recently made by Yilmaz and 

Crow (2014). They observed that the error orthogonality hypothesis does not hold for typical 

surface soil moisture datasets, yet the impact of this violation is generally negligible as the 

bias in error variance estimates due to error non-orthogonality is dampened by the 

application of rescaling parameters or even compensated if the magnitude of non-

orthogonality is approximately the same for all considered datasets. However, if more than 

one time series is non-orthogonal, the non-orthogonality problem implies also cross-

correlated errors. Combinations of datasets which are commonly assumed to fulfil the 

requirement of error orthogonality are any triplets consisting of (i) active microwave 

retrievals, (ii) passive microwave retrievals, (iii) in situ measurements, or (iv) land surface 

models, provided that neither of them is dependent on another member of the triplet (e.g., 

a model that assimilates the microwave retrievals) (Scipal et al.,2008; Dorigo et al., 2010; 

Crow and Van den Berg, 2010b; Draper et al., 2013). However, by investigating a set of these 

four observation types both numerically and analytically, Yilmaz and Crow (2014) recently 

found that significant non-zero error cross-correlations exist even between active and 

passive satellite-based data. Moreover, they found that error cross-correlations have a 

greater influence on the error variance estimates than non-orthogonality because they are 

not compensated when being of equal magnitude for all datasets.  

Furthermore, as reported in Gruber et al. (2016a), representativeness errors might occur in 

TC analysis when it is applied on one point-scale in situ dataset together with two coarse-

scale datasets that have a comparable spatial representativeness (e.g. active and passive 

satellite retrievals). While all processes that lead to soil moisture variations at the in situ site 

also affect the coarse-scale average, there might be soil moisture variations within the 

support of the coarse-scale datasets that do not take place at the site location (e.g., localised 

rainfall events). In this case, TC will penalise the in situ site for its missing ability to resolve 

coarse-scale soil moisture features, while the error variance estimate for the coarse-scale 

datasets will remain unbiased. In addition, applying TC on three datasets with significantly 

differing spatial representativeness, such as an in situ site, a medium-scale land surface 

model, and a coarse-scale satellite dataset, TC will penalise both the point-scale and the 

coarse-scale dataset with representativeness errors, while the error variance estimate for 

the medium-scale dataset will remain unbiased (Gruber et al. 2016a). 

Although the fundamental underlying maths and required assumptions have remained 

unchanged over time, useful advances have been made in the way the obtained error 

estimates are presented and interpreted. In the literature, most studies investigate error 

variance estimates directly. Recently, several studies proposed to investigate errors relative 

to the underlying signal, i.e., as a direct or indirect representation of the SNR (Draper et al., 
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2013; Su et al., 2014; McColl et al., 2014). Another approach concerns the investigation of 

soil moisture sensitivities by using TC analysis (Stoffelen, 1998; McColl et al., 2014). In 

Gruber et al. (2016a), the proposed metrics have been reviewed and their similarities 

demonstrated, highlighting also their respective advantages and disadvantages by applying 

TC analysis to soil moisture data acquired over the contiguous United States (CONUS) from: 

(i) active satellite retrievals (ASCAT), (ii) passive satellite retrievals (AMSR-E), and (iii) a land 

surface model (GLDAS-Noah), covering a time period of almost five years. By combining the 

investigation of the SNR (expressed in logarithmic units), unscaled error variances, and soil 

moisture sensitivities of the datasets, Gruber et al., (2016a) found that the SNR[dB] of ASCAT 

is mainly dominated by its sensitivity pattern whereas the SNR[dB] of AMSR-E is mainly 

dominated by its error variance pattern (Figure 5-3). Such outcomes may have an important 

impact on the development and improvement of novel and existing retrieval models as they 

allow to pinpoint areas in which the sensor and/or the algorithm are prone to noise and in 

which areas they exhibit reduced sensitivity to soil moisture. Therefore, such areas can be 

related to geographic features such as rainfall patterns or vegetation, and targeting these 

issues requires different strategies (Gruber et al., 2016a). 

5.2.4.4 Extended collocation analysis 

The increasing simultaneous availability of various active and passive satellite-based sensors 

inevitably leads to the need for a fully parameterised error covariance matrix, which is vital 

for any statistically rigorous attempt to merge multi-source soil moisture retrievals into a 

unified dataset. While triple collocation (TC) analysis has been widely recognised as a 

powerful tool for estimating random error variances of coarse-resolution soil moisture 

datasets, the estimation of error cross-covariances remains an unresolved challenge.  

A first attempt to estimate off-diagonal elements of the error covariance matrix was made 

by Crow and Yilmaz (2014), by analytically combining TC analysis with Kalman filter 

innovation analysis, commonly referred to as Auto-Tuned Land Data Assimilation System 

(ATLAS). More recently, Crow et al. (2015) proposed a TC-based approach to estimate off-

diagonal elements by using lagged variables (i.e., temporally shifted representations of a 

particular dataset) (Su et al., 2014a) to generate dataset triplets with uncorrelated errors, 

which can also provide consistent error variance estimates. Subtracting those estimates 

from error variance estimates obtained from a triplet, using the corresponding dataset 

together with two datasets that have correlated errors, yields an estimate of their error 

covariance. However, error cross-covariance estimates produced by this technique can 

become biased in the presence of temporal error auto-correlation (Crow et al., 2015). 
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Figure 5-3 SNR[dB] estimates (top), soil moisture sensitivity estimates (middle), and (unscaled) error 
variance estimates (bottom) for ASCAT (left) and AMSR-E (right) over the contiguous United States 
(CONUS). Results are only shown for areas where all three datasets achieve a significant positive 
correlation (p<0.05) (Gruber et. Al, 2016a). 

 

Another extension of TC was introduced by Pan et al. (2015). It also tolerates the existence 

of nonzero error cross-correlations when using more than three datasets and solves the 

collocation problem through Pythagorean constraints in Hilbert space, yet it does not yield 

estimates for nonzero error cross-correlations. Instead, it splits all considered datasets into 

so-called structural groups, within which the datasets are likely to have correlated errors. 

Random error variances of each dataset in each group are then estimated as two 

components: one part that is correlated with the errors of the other datasets (within the 

same group), and the remaining part that is entirely independent from all other datasets 

(within all groups). Summing up these two components, yields estimates for the individual 

total error variance of all datasets.  



 

Comprehensive Error 

Characterisation Report, Revision 2 (CECR) 

Version 1.0 

Date 7 July 2017 

 

38 

Pierdicca et al. (2015) recently proposed to extend TC analysis with a fourth dataset and to 

solve this quadruple collocation (QC) problem as an over-determined system of three 

possible triplets in a least squares sense. This minimises the uncertainty of individual error 

estimates, but still requires uncorrelated errors between all four datasets. Following 

Pierdicca et al. (2015), the extended collocation analysis (EC) has been proposed in Gruber et 

al. (2016b) aiming at the estimation of error cross-correlations by generalising the TC 

method to an arbitrary number of datasets and relaxing the assumption of zero error cross-

correlation for certain dataset combinations. The number of allowed nonzero error cross-

correlations between dataset pairs is mainly limited by the overall number of datasets used 

and by their underlying error cross-correlation structure. Each member of the dataset pairs 

with assumed nonzero error cross-correlation must also be a member of at least one dataset 

triplet with fully independent errors. Furthermore, remaining degrees of freedom can be 

used to solve the collocation system of equations in a least squares sense. Besides the 

estimation of a limited number of nonzero error cross-correlations, the EC technique 

provides also error variance and scaling coefficient estimates for all considered datasets. The 

proposed EC method was evaluated by Gruber et al. (2016b) using both a synthetic identical 

twin experiment and real data experiments. The synthetic experiment shows that EC analysis 

is able to reliably recover true error cross-correlation levels. Applied to real soil moisture 

retrievals from Advanced Microwave Scanning Radiometer-EOS (AMSR-E) C-band and X-

band observations together with Advanced Scatterometer (ASCAT) retrievals, modelled data 

from Global Land Data Assimilation System (GLDAS)-Noah and in situ measurements drawn 

from the International Soil Moisture Network, EC yields reasonable and strong nonzero error 

cross-correlations between the two AMSR-E products (Figure 5-4). Nonzero error cross-

correlations are also found between ASCAT and AMSR-E. The EC method presented in 

Gruber et al. (2016b) is readily applicable to an arbitrary number of datasets, which would 

facilitate the estimation of more nonzero error cross-covariance terms (e.g., when using 

three passive datasets such as SMAP, AMSR2, and SMOS together with two active datasets 

such as MetOp-A and MetOp-B). Therefore, it represents an important step toward a fully 

parameterised error covariance matrix, which is vital for any rigorous data assimilation 

framework or data merging scheme. 

 



 

Comprehensive Error 

Characterisation Report, Revision 2 (CECR) 

Version 1.0 

Date 7 July 2017 

 

39 

 

Figure 5-4 Global error cross-correlation estimates for AMSR-E C- and X-band soil moisture retrieval. 
White shading indicates areas where estimates did not converge to a meaningful value (Gruber et al., 
2016b). 

 

6 Input Data  

This section will shortly introduce various datasets that have been used for the validation 

and error characterisation of the soil moisture product generated in the framework of the 

ESA CCI SM project. A more comprehensive description of these input data is provided in 

[RD-7] ŀƴŘ ƛƴ ǘƘŜ άData Access Requirements Document (DARD), D1.3.1, Version 0.5έ ό06 

July 2017). 
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6.1 In situ  soil moisture datasets  

6.1.1 The International Soil Moisture Net work (ISMN) 

Since the early 1980s, several dedicated soil moisture field campaigns in the USA, Europe, 

and Australia have resulted in both short-term and long-term soil moisture datasets, mainly 

used for satellite validation purposes. Given the increasing interest of the scientific 

community in understanding the relationship between soil moisture and climate change, the 

in situ stations network is currently expanding worldwide, measuring soil moisture routinely. 

Nevertheless, the number of long-term in situ monitoring networks is still globally relatively 

small. Complicating the utilisation of network data is the lack of a standard measurement 

technique and a standard measurement protocol (Robock et al., 2000). Furthermore, the 

fact that a large number of different organisations manage the various datasets makes the 

use of in situ soil moisture measurements for validation a time consuming effort. 

To overcome many of these limitations, the ISMN (https://ismn.geo.tuwien.ac.at) has been 

initiated to serve as a centralised data hosting facility where globally available in situ soil 

moisture measurements from operational networks and validation campaigns are collected, 

harmonised, and made available to users on a no-cost basis (Dorigo et al., 2011; 2013).  

Currently (May 2017) the ISMN contains data from 56 networks and more than 2000 

stations located over mostly North America, Europe, and Asia but also Africa, South America 

and Australia (Figure 6-1). The time period spanned by the entire database runs from 1950 

until present, although most datasets have their start date in the last two decades. 

Implementation of enhanced quality control and error characterisation schemes provides a 

universal quality measure of the measurements at the ISMN stations (Dorigo et al., 2013). 

For details on individual sites, see Dorigo et al. (2011).  

 

  

Figure 6-1 Map of the distribution of networks and stationed included in the ISMN. The distribution is 
that on May 2017. 

https://ismn.geo.tuwien.ac.at/
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6.1.2 The North America Soil Moisture Database 

The North America Soil Moisture Database (NASMD) has been developed by the Department 

ƻŦ DŜƻƎǊŀǇƘȅΩǎ /ƭƛƳŀǘŜ {ŎƛŜƴŎŜ [ŀō ŀǘ ǘƘŜ ¢ŜȄŀǎ !ϧa ¦ƴƛǾŜrsity, and it is available for data 

downloading or on-line visualisation at http://soilmoisture.tamu.edu/Data/Map (Figure 6-2). 

Soil moisture data stored in the NASMD are harmonised and quality-controlled. Along with 

in situ soil moisture data, the NASMD provides metadata for the observation sites. Metadata 

includes information on the nearest town of the observation sites, country and state; the 

parent observation network; the number of soil depths recording values of soil moisture 

data; the instrument/sensor name; the temporal sampling frequency; and other useful 

metadata information. Most of the sites covered by the NASMD are also in ISMN. 

 

 

Figure 6-2 The NASMD interactive map showing all stations in the network. Screen shot from 
http://soilmoisture.tamu.edu/Data/Map. 

 

6.1.3 The SwissSMEX Network 

The SwissSMEX soil moisture network was established in 2008 in Switzerland, within the 

Swiss National Science Foundation project 

(http://www.iac.ethz.ch/url/research/SwissSMEX). The network consists of 19 sites at 17 

different locations at elevations below 1000 m a.s.l. (Figure 6-3). Soil moisture and soil 

temperature measurements are available every 10 minutes and are taken at one or more of 

several depths (5, 10, 30, 50, 80 and 120 cm; the installation of the measuring instruments is 

adapted to local conditions) using site-specific calibrated soil moisture sensors (Mittelbach 

et al., 2011). At each site meteorological measurements (e.g., precipitation, temperature, 

http://soilmoisture.tamu.edu/Data/Map























































































