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1 Executive Summary

This Comprehensive Error Characterisation ReffGECR) gives an overview of all known
errors of the soil moisture datasets as generated by B8A CCI Soildidture project. This
report defines the different error characterisation proxies and describes the errors of the
ESA CCI Shatasets. Over the s global soil moisture data from satellite observations
have been validated witlin situ observations. This is a challenging task because there is a
strong difference in spatial support. Typicallwo techniques are used to describe tESA

CCI SMkil. One is on the absolute differences (uabiasedRoot Mean Square Error, mean
average error, mean bias) and the other on the relative agreement (i.e. correlation
coefficients and covariance)lhe absolute measures assess the effect of random and
systematic error, and the relative measures check the association of the phasing of the
separate datasets.

Other techniques to assess the soil moisture error from coagselution soil moisture
products are error propagation, triple collocation, andngtrics.

An error propagation analysis is a standard error technique and uses the errors of the input
parameters in a covariance matrix to calculate the errors of the output. This matrix can be
estimated with a Monte Carlo simulation, or in some cases solvelytarely.

The triple collocation is a technique to estimate the magnitude of the ‘tuaéable term of

soil moisture, but does not address the bias term. This technique can be applied at global
scale, but three independent datasets are needed with digaht long data record (100
triplets is the minimum boundary, 500 is advised).

Finally, the Rnetric is a tool to quantify the value of soil moisture retrievals. ThedRic is
based on the notion that an overestimate of the simulated error in rainf@iild require
removal of water and, vice versa, an underestimate of the simulated error in rainfall would
require addition of water. The water quantity would generally be a function of soil moisture.
Rmetric is a measure of added skill, sensitive to i accuracy of a soil moisture product
and the accuracy of a rainfall estimate driving a medukeded estimate of soil moisture. This
fits in with the notion that measuring the added value of remotely sensed observations
relative to a reference piece afiformation is important for assessing the higHevel value
associated with an assimilated soil moisture product.

2 Change record

The content of the report has been revised and updateflecting new and additional work
conducted by the consortium 0BSA Cl SMphase 2productversion 03.2This is Revision 2
2T GKS LIKI & SomprehB@i@ dzYos @haracterisation Repevision 1 (CEGR)
D2.2.1 Version 1.6 23&une 2016
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The following changes have been made to the document
A Section 5.1: New tabladded on sources of errors
A Section 7.1.1.2: New table added on scatterometer performance

A Section 7.1.2.5: Additional information on the WARP software with regards to noise
error propagation modelling has been added, including new figure on global
distribution of estimated st.dev due to noise and other effects

Section 7.2.1.4: Geolocation errors text updated with new information, relevant to
the ESA CCI SM product

Section 7.2.2.1: New figure added under vegetation modelling based on recent
publication

A
A
A Secton 7.3: List of input datasets considered for generation and validation of merged
SM product has been added

A

A

A

Section 7.3.3: Short description of mergawduct error propagation added

Section 7.3.3.1: Additional information on merging passive dataseiges g
(combinations of data overlap and weights)

Section 7.3.3.6: Information of input dataset decision making for the merged product
(decision tree) has been added

A Section 7.3.4: Three new paragraphs outlining studies and results relevant to this
sectionhave been added

A Referencesi7 new references added to the document citing recent and new
research

3 Introduction

3.1 Purpose of the document

A key target during Phase 2 of the ESA &1l Moistureis to produce a longerm soil
moisture ECV dataset for use Kiye community, in particular by climate scientists and
weather forecasting agencies. Although these data are not intended to be used wmaatar
time for, e.g., assimilation into NWP (Numerical Weather Prediction) models to produce the
best initial statefor weather forecasts, the quality of these data must be comparable to that
used by NWP agencies. Thus, validation ofEB& CCI Spoduct is a key element of Phase

2. This evaluation wilssessind characterise errors and uncertainties in the ldagn ESA

CCI SMroduct Furthermore, there is also a need for error charassdion of theLevel 2
products that provide the input to the final ESA CCI product.

The Comprehensive Error Characterisation Rep@ECR) providea comprehensive
overview of all kown errors of theESA CCI Statases to be generated by thESACCI Soil
Moisture project. A good understanding of all errors is essential to distinguish real trends in
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the soil moisture time series from artificial trends caused by changes in space
instrumentation, sensor degradation, and retrieval errors.

Intensive validation and error charactsation activities have been carried out during Phase
1 of the ESA CCI SM project ahave continued in Phase 2. This document provides a
reviewed and updatedersion of CECR Phas¢AD-3] and of the firsthomologousreport
provided in the framework of the ESA CCI SM PRd#é>4]. CECR is thus intended to be a
divingR 2 O dzY, @hyictikas beerupdated on a regular basis to account for new theoretical
insightsand validation results.

3.2 Targeted audience

This document targets mainly:

1.Remote sensing experts interested in the retrieval and error characterisation of soil
moisture from active and passive microwalatases, and

2. Users of the remotely sensed boioisturedatases, who want to obtain a more walepth
understanding of the errors

4 Documents

4.1 Applicable documents
[AD-1] ESA Climate Change Initiative Phase 2, Statement of Work, ANNEX L (Soil Moisture),
ESA Climate Office, GRRGMEOPSW12-0012.

[AD-2] Technical Proposal (Part 3) in response to ESA Request for Quotation- RFQ/3
14173/14/kINB, ESA Climate Change Initiative (GMECV), Phase 2, Earth Observation Data
Centre for Water Resources Monitoring (EODC) GmbH.

[AD-3] Comprehensive Error Characterisat Report (CECR), ESA Climate Change Initiative
Phase 1 Soil Moisture.

[AD-4] Comprehensive ErroCharacterisation Report (CECROY1ESA Climate Change
Initiative Phase 2 Soil Moisturéune 2016

4.2 Reference documents

[RD1] Soil Moisture Retrieval fromActive Microwave Sensors: Algorithm Thearal
Baseline Document (ATBD.2)3 ESA Climate Change Initiative PHaSeil Moisture.
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[RD2] Soil Moisture Retrieval from Passive Microwave Sensors: Algorithm Tloabreti
Baseline Document (ATBD.2)3 ESA Cliate Change Initiative Phageoil Moisture.

[RD3] ECV Production, Fusion of Soil Moisture Products: Algorithm ThedrBasaline
Document (ATBD v3, ESA IEnate Change Initiative PhasesSdil Moisture.

[RD4] Product Specification Document (PSD), ESwate Change Initiative Phase 2 Soil
Moisture.

[RD5] Product Validation and Intercomparison Report (PVIR), ESA Cliate Change
Initiative Phase &oil Moisture, May 2016.

[RD6] Climate Research Data Package (CRDP v1.0), ESA Climate Change Rintaat?
Soil Moisture, December 2015.

[RD7] ECV Validatiobataset(ECVa D81.0, ESA Climate Change Initiative Phase 2 Soil
Moisture, June 2017

5 Background

Soil moisture is a key variable for understanding the hydrological cycle (Severetaihge
2010) and retrievals of this quantity from various observing platforms (e.g. grbased

and satellites) provide observational information that helps improve our understanding of
soil moisture, including testing our understanding of the hydrological @&lembodied in
models. It is thus of interest to provide objective quantification of the value of soil moisture
retrievals, and in particular provide an objective estimate of: (i) the errors in the soll
moisture retrieval; and (ii) the added value of tbhbservational information compared to
that provided by a model.

5.1 Sources of Errors

Errors have different sources, some of them are related to sensors and scaling, and others
are more related to thedopted soil moisture retrievallgorithms. Ashort descption of the
sources of error contributing to uncertainty in the data produistprovided in this sectiaon

For a moradetaileddescription please refer toAD-3]. Mainfactorsare listed in @ble 1

Table1l Main sensor observatimal, and environmental factors impacting the djiya of the ESA CCI
SM products

Factor Category Affects active | Impact on soil moisture retrieval| How it is handled in ESA CCl §
(A) or passive v03.2 + potential recommendation
P) for use
observations

Obsewation Sensor AP Shorter wavelengths  (highg Preferential use of longe




soil moisture
cci

Comprehensive Error

CharacterisatioriReport,Revision 2 (CECH

Version 1.0
Date7 July 2017

frequency /
wavelength

frequencies) are more sensitiv|
to  vegetation, theoretically]
causing higher errors. Differer|
wavelengths have different so
penetration depths, and thug
represent different surface so
moisture columns.

wavelengths when multipleg
frequencies are available. Indirect
accounted for by SNBased
weighting and indirectly quantified a
part of the random error estimate
(see below). The frequency an
sensor that wee used in ESA CCI S
are provided as ancillary data.

Instrument Sensor
errors and

noise

AP

Directly impacts the error of thq
singlesensor  soil  moisture
retrieval

Included in total random error ES
CCl SM products assessed by tri
collocation. Soil misture random
error provided as separate variable.

Local Sensor
Incidence
angle and

azimuth

Impacts  backscatter
strength and hence
value

signg
retrieve(

Accounted for by incidence angle af
azimuthal correction in level 1
retrieval. Remaining unceriaty is
indirectly quantified as part o
random error estimate.

Local Orbital
observation

time

AP

Vegetation  water  content
changes during the dagSteele
Dunne et al. 2012) but this
variability is not accounted for b
the retrieval models. Early
morning observations may b
influenced bydew on soil and
vegetation, thus leading tdq
higher observed soil moisturg
Solar irradiation cause
discrepancies between canop
and soil temperatures whicl
complicate the retrieval of soi
moisture (Parinussa et al. 2016
ass I f a2 |
¢ SY LIS NI ( dzNIB &dailp
variations because of convectiy
precipitation and successiv|
evaporation may be missed.

tFNIte | RRNBaasSR
G A YS¢ iomeid Robservations,
Remaining uncertainty is indirectl
quantified as part of random erro
estimate.

Vegetation Environmental

cover

AP

Reduces signal strength from s
and hence increases uncertain
of soil moisture retrieval

Included in total randonerror of ESA
CCl SM products assessed by tri
collocation Dense vegetation g
masked for passive Level 2 produ
according to sensespecific VODO
thresholds: Soil moisture randon
error is provided as a separaf
variable.

Topography Environmental

AP

Impacts  backscatter  signd
strength; causes heterogeneol
soil moisture conditions withir
the footprint

Not accounted for. Topography inde
is provided as metadata. A flagging
pixels with topography index > 10%
recommended.

Open water Environmetal

AP

backscatter an
temperature signg

Impacts
brightness
strength

Not accounted for. Open wate
fraction is provided as metadata.
flagging of pixels with open wate
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fraction > 10% is recommended

Urban areas, Environmental| A,P Impacs backscatter ang Not directly accounted for

infrastructure brightness temperature signg Uncertainty is indirectly quantified a
strength part of random error estimate.

Ice and snow| Environmental| A,P Obstructs soil moisturd Masked using radiometdvased land

coverage information surface temperature observation

(Holmes et al. 2009nd freeze/thaw
detection (Naeimi et al. 2012jrom

level 2 algorithms, and ancillary da
from ERAInterim and GLDARoah in
ESA CCI SM production. Flag provi
as metadata.

Frozen soil| Environmental| AP Strongly  impacts  observe( Masked using radiometdrased land
water backscatter / brightness surface temperature observation
temperali dzNB & Ol dz& A (Holmes et al. 2009nd freeze/thaw
reduction in soil moisture detection (Naeimi et al. 2012jrom

level 2 algorithms, and ancillary da
from ERAInterim and GLDABoah in
ESA CCI SM production. Flag provi
as metadata.

Dry soil| Environmental| A Volume scattering causel Not directly accounted for, bu
scattering unrealistic rises in retrieved so| indirectly accounted for by low
moisture(Wagner et al. 2013 weight (related to high error
received in SNRased blending.

Land surface Environmental| P Errors in  land surfact | NIif @ | RRNB&&SR

temperaure temperature directly impact thef G A Y S ¢ N} RA2YSiGS
quality of surface soil moistur¢ Remaining uncertainty is indirectl
retrievals guantified as part of random erro

estimate.

Radio Environmental| P Artificially  emitted radiance In the case of mukfrequency

frequency increases brightnesy radiometers, a higher frequey

interference temperatures and, hence, lead channel (e.g. ¥and) is used if RFI

(passive only) to a dry bias in retrieved so| detected. In other cases, th
moisture. observation is masked.

5.1.1 Instrument -related errors

The radiometer calibration accuracy budget, exclusive of antenna pattern correction effects,
is composed of four major contributarsvarm load reference error, cold load reference
error, nonlinearitiesand errors with radiometer electronid®AD-3]. Another source of error
related to theradiometersis due togeolocation. Geolocation of satellite data is a standard
part of the pst-launch calibration process (Purdst al, 2006) and gives insight in the
absolute mapping skill of the sensor. The geolocation error is related to the accuracy of the
incidence anglepolarisationrotation angle, scan azimuth angle, spacecraft attitude aR& G
data. Unfortunately, geolocation errors are hard to find in literature and it is not always clear
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how these errors are obtained. Thereforgeolocation error assessment for different
satellite sensors (in relation to frequency and bandwidth) is recondadnA final error
related to the satellitesystem is the orbital decay, whias the process of prolonged
reduction in thealtitude of a satellite's orbitlue to drag produced bthe atmosphere due to
frequent collisions between the satellite and surroumgl air molecules. Orbital decay can be

a serious issue for trend analysis because it can create artificial trends in datasets (Wentz
and Schabel, 199.

Concerning scatterometeaelated errors [AD-3], degrading transmitter energy, noise,
antenna misgpointing or a degrading satellite altitude lead to inaccuracies in the estimation
2 T & Kh@refore, two calibration strategiese usedo monitor the radiometric accuracy
and the radiometric stability of the instrumer@n-board internal calibration iperformed to
compensate for contribution of thermal noise to the backscattered energy and calibration
pulse measurements to monitor variations of the transmitter power and the receiver gain.
Hence, this calibration strategy is used to monitor and detecy amomalies of the
instrumentbehaviour External calibration of the instrument is performed to ensure that the
backscattered energy measured by the instrument is correct (absolute calibration) for all
incidence angles (relative calibration). Externalbcation is done in a separate calibration
mode of the instrument, using ground base transpondé&nsrthermore any antenna miss
pointing can be detected due to accurate knowledge of the transponder location. A second
external calibration strategy es natural, distributed targets (e.g. rainforest, ocean or sea
ice) to monitor or correct for variations according to timeidenceangle. This method allows
relative calibration based on models developed for these natural targets.

5.1.2 Algorithm -related errors

AMSREwas the first widely used passive microwave radiometer to be used for the retrieval
of soil moisture, therefore several algorithms exist (Nj@nd Chan 2006; Paloscet al.,
2006; Oweet al., 2008; Jacksost al., 20(). Most of these algorithms are bed on the
radiative transfer theory of Met al. (1982) who described a simple physicabigsed model
that can effectively estimate radiatioamitted by the soil surface, even if this surface is
coveredby vegetation. Such radiative transfer modéls_ Y 2)R&Sériliethe emission of
microwave radiation from the soil surface as observed from above the carfidmy are
generally based omseveral assumptionsvhich may lead to algorithrrelated errors For
instance,all radiative transfeibbased approehesassume thattte land surface temperature

is the area mean odoil and canopy temperature. it K S NJ A y LJdz(  EJ- N 2YRSS|f SANzR
such as the single scattering albedo and surface roughness, lack detailed informdiicim

leads to several assumptions

Other soil moistureretrieval algorithmsare based on neural networks models traineday
large amount of input datalhe objective of the learning phase is to establish irputput

7
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data relationship without any knowledge of the studied phenomenbmetraining dataset is
assumed to be representative of the phenomenon under investigatidowever, poor
accuracy in the training samples can lead to errors in the final products.

TheWater Retrieval Packad@/ARR algorithm used for ASCAT processing empgimple
semiempirical model to obtain normalised from raw backscatter values, which are then
related to the historically lowest and highest normalised backscatter values at a given
location. The model rests on several assumptions, which, when violatéidyesult in
inaccurate or even meaningless soil moisture estimates. For example, a key assumption is
that backscatter expressed in dB is an increasing linear function of the soil moisture.
However, it was observed that in some locations under extrgrdey conditionsflat terrain

and with low incidence angle observatignizackscatter may actually increase rather than
decreasg(Prigent et al. 2015)The presence of snow, ice or open water bodies poses similar
problems. These cases have to be detected #lagged accordingly.

The above modelling errors are rooted in discrepancy between the real physical processes
we are interested in, and our incomplete understanding and possibly oversimplified
description of these processes. A related issue is the nomgel, which dealsnainly with

the uncertainty of our knowledge about theghysical parameters we want to retrievé.
describes how uncertainties in the original measurements transform along the processing
chain and thus affect the uncertainty of the flinp@roduct. In WARP, this is done mginia

error propagation geesection5.2.1). The noise model, like the physical model, has to rely
on assumptions that may not always hold in practice, but are made to allow for a more
efficient implementation of thealgorithm.

5.1.3 Scaling Errors

Soil moisture influences a range of environmental processes in a nonlinear manner leading
to scale effects that need to be understood for improved prediction of moisture dependent
processes. Similarly, several spatially and terajppvarying environmental processes (e.g.
hydro-meteorological variables, such as precipitation and evapotranspiration) influence soil
moisture itself.

The evaluation of longerm soil moisture data is challenging, mainly because as for any EO
dataset,il KSNB SEA&(a y2 3Jt26lf NBFSNByOS RIGHaS
RFGIFIasShd GdKIFIG OFy LX I & (G4KS NMNEBituBeastirémeftKobsoitt (i NHz( f
moisture. Nevertheless, these data will not provide the ultimate answer oratioeiracy of

the satellitederived soil moisture products, but only an estimate of this accuracy.
Furthermore, we must address two fimer difficulties when usingn situ data to evaluate

satellite soil moistureproducts. First, different measurement depthsdepending on
measurement frequengymicrowave sensors sense within €&5cm, whilein situ sensors
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typically sense at least 5 cm in depth, and often deeper. Second, different spatial fogtprints
microwave sensors, mounted on satellite platforms, senser areas of order 100s Kn
while in situsensors are, essentially, point measurements (the footprint typically extends to
a few dn¥). Moreover,despitethe network of soil moisture stations is expanding worldwide
(see sectiorb.1), ground measurements astill not available globally. Therefore, we need
algorithms (e.g., triple collocation, data assimilation) to match the spatial characteristics of
the in situ and satellite soil moisturedatasets and fill in the spatimporal gaps in
coverage. We also e additional reference datasets (e.diner spatial resolutionSAR
based soil moisture retrievals, estimates of total water storage changes, analyses from land
data assimilation systems) to complete and extend the regions of evaluation from the
locationsof the in situmeasurement sites. This will provide the information necessary for a
complete validation of thesatellite soil moistureproducts (e.g. the CCl SM dataset),
including theirerror characterisation

Recently, significant progress towards ogeaal soil moisture remote sensing products
was made which resulted in severdtases having global coverage. However, accurate
estimates of error structures are still needed for these datasets (Sapal 2008).
Validation againsin situobservatias is difficult becausef the typical mismatch between

the small support of the poirscalein situ measurement and the large support of remote
sensing data productfAD-3]. Additionally, several studies showed that uncertainties of
remotely sensed soil oisture products differ per climate regime. In remosensing
applicatians, as in physicalyased mod#ing of landsurface processes, the representation
(inclusion) of subgridcale variability in coarse resolution data remains a challenge. The
problem s one of spatial interpolation, upscaling or downscaling. Essentially this is a result
of the discrepancy between the coarse spatial scales (and often temporal scales) of available
data and the fine scales necessary for meaningful research and applications

In Wanderset al. (2012), the soil moisture mapping accuracy of two passive (i.e. AM@Rd
SMOS) and one actiyee. ASCAThicrowave satellitewas evaluatedSatellite soil moisture
products were compared with the physicabbpsed high resolution SXWP (Soil Water
Atmosphere Plant) model (Van Dam, 2000; Kretesl., 2008). An advantage of a physically
based unsaturated zone models is their capability to represent spatiotemporal variation in
meteorological forcing, soil parameters and unsaturated zprecesses (De Lann@y al.,
2006; Finkeet al.,, 1996). This enables validation at the spatial resolution of the microwave
soil moisture products (622500 kn?). The SWAP model integrates local information (e.g.
meteorological stations, soil data) withgh spatial resolution (krscale) remotely sensed
imagery (e.g., Leaf Area Index). Combining information from these different sources allows
for upscaling of the high spatial resolution unsaturated zone model to match the spatial
resolution of the remotelysensed soil moisture productn Wanderset al. (2012, solil
moistureover Spairwas modded at a high vertical and horizontal resolution and averaged
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over the support of each satellit&emivariogram models of the errors of all satellite soil
moisture poducts for the entire simulatioperiod shoved a spatial correlation in the error
ranging betweenl100 and 220 km for the three satellites productSigure 5-1). The
correlation range, sill and nugget of the vanaign are almost equal for all satellite products
indicating that soil moisture errors hawe similarspatial error pattern for AMSE, SMOS
and ASCAT.
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Figure5-1 Semivariograms of the biaverage time depeatent satellite product error calculated for
three satellite soil moisture products and the SWAP model, from all DGG locations for the period
January 2010 June 2011 over Spain (Wandetsl., 2012)

5.1.3.1Spatial Scaling issues

Spatial scaling techniques can He&/ided into behavioural techniques and procdssed
techniques. Behavioural techniques focus on quantifying the apparent observable behaviour
of soil moisture patterns as a function of scale and use this gquantification to predict the
effects of changingcale. These techniques rely on data and statistical analysis, which may
be combined with a conceptual understanding of process controls through the use of
ancillary data. In contrast, procebssed techniques aim for a deeper understanding of the
physicd processes causing the spatial pattemisserved insoil moisture. They utde a
conceptual understanding of soil moisture process and physics, usually within a
deterministic reductionist framework of distributed water balance modelling/and_and
Surface Model, to predict the effects of changing scale. At small scales, soil moisture
responds to variations in vegetation (Qaitial. 2001), soil properties (Famigliedi al. 1998),
topographically driven variations in lateral flow (e.g., Duamel Black B70a,b), radiation

(e.g., Westernand Bloéschl 1999), and precipitation. As spatial scale increases, different
sources of variation become apparent. Variation in vegetation shifts from plant to patch
scale and then finally to community scales. Soil prapsrvary as different soil types and
geomorphological features interact. Variations in rainfall patterns can occur at spatial scales

10
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as small as hundreds of meters due to the passage asfrstells (Goodriclet al. 1995;
however, the longerm effect on ®il moisture variability may be observed at larggratial
scales as the soil profile stores precipitation over time and thus tends to smooth some of the
spatial and temporal variations in instantaneous rainfall rates. Obviously, at spatial scales of
seveanl kilometres, examples of soil moisture variability are evident due to spatial variability
in event rainfall depth. At still larger scales, climatic variability and variations in precipitation
depths lead to substantial changes in soil moisture conditibesveen climate regions.
Variations in humidity, temperature and radiation also have an effect on soil moisture
through evapotranspiration processes. All of the factors affecting the distribution of soll
moisture discussed above are correlated in spacesdme degree. For example, rainfall
depth and intensity is likely to be more similar for two points 1 m apart than for two points 1
km apart. These spatial correlations form spatially correlated soil moisture patterns. Lateral
redistribution of soil wateralso increases spatial variation and correlation (Westtrral.
2002) Lateral moisture fluxes present a specific problem anel asoil moisture estimate
error source for most Land Surface and Hydrological Models applicable on mesoscales.
Mesoscale modsl even if distributed, cannot usually take into consideration lateral
moisture transport from one computational node to another. Instedateral moisture
transport is usually handled by a separate routing model. In essesaally this means that
lateral moisture transport is assumed to exit a Land Surface System, and only iexist
stream network (or being routed to one, by the routing model), once it is determined to
have left a particular cell.

5.1.3.2Temporal Scaling issues

The largest temporal scale feae of a time series is seasonal variation in soil moisture. This
occurs in response to seasonal changes in the balance between evapotranspiration (ET) and
precipitation. Overlaid on this seasonal cycle is a series of wetting and drying periods with
time scales related to storm duration and intstorm periods, respectively. The rate of
depletion during drying periods is mainly related to the rate of evapotranspiration and
drainage divided by the rooting depth. The contrast in the rates of change for Biogeand
decreasing soil moisture is primarily related to differences in flux magnitudes in precipitation
and evapotranspiration processes (Westetral., 2002).

Graysonet al. (1997) discuss the theoretical presence of preferred states in the temporal
distribution of soil moisture. Where ET dominates over precipitation, soil moisture tends to
be consistently low. Similarly, where precipitation dominates over ET, soil moisture tends to
be consistently high. This behaviour is a consequence of the boundedenaf soil
moisture. In many landscapes there is a seasonal shift between these two states. In
landscapes where there is significant lateral movement of water, this temporal behaviour
corresponds with a change in controls on the spatial soil moisturéepatfrom being

11
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dominated by local vertical fluxes during the dry state to being dominated by lateral fluxes
during the wet state.

5.2 FError Characterisation Methods

5.2.1 Error Propagation

Error propagation is a standard technique for estimating the noise of questinferred
from noisy data. Letx = (x4, ..,x,) be an actual glimensional observation vectox is

assumed to be an instance of adpnensional random variable, with known covariance

matrix C,. We are interested how the covariance transfornmeler a mapping = f(x), i.e.,
givenx andf, we would like to know the covariance gfC,. Iffis a linear mapping of the

formy = Ax + b, then the covariance transforms like:

C, =ACA' (5.1)

wherebyATdenotes the transpose 6.

If, on the other handf is a nonlinear mapping, we firdinearise it by replacing it by its first
order Taylor approximation about the operation pox:

y=100=1(x)+ & dx- x,) 52)
GHX =
whereby the matrixgéig with elements
GHX+
g - M (5.3)
CIX= X

is theJacobiarof f. Putting everything together, we finally obtain:

c,-A g g (5.4)
gixs gl

for the covariance matrix of under the mappind.

Error propagation is a general, conceptually simple and widely used technique for obtaining
error characterisatios. It only requires that:

1 the covariance matrix of the inputs is knoyand
1 the Jacobiarf the transformation that acts on the inputs can be computed.

12
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In practice it is also often assumed that that inputs are uncorrelated (or the correlations are

negligible), which will simplify the computations involved. In cases where the transformation
Isso complex that its Jacobian with relation to the inputs cannot be obtained, a Monte Carlo
approach could be employed alternatively (however, this is often computationally

prohibitive).

A possible shortcoming of error propagation is thatharactersesthe error distribution of

the product solely in terms of its covariance matrix. If the full error distribution is required,
this could be obtained either empirically using Monte Carlo, or analytically, for example,
within the Bayesian framework.

For the idividual scatterometer and radiometer products, error propagation schemes have
been developedor will be adaptedin the framework of this project (Naeinett al., 2009
Parinussaet al., 2012). However, the propagation of the errorslefvel 2 products though

the ESA C@M processing system has so far not been thoroughly addressed and currently
follows exactly the same scaling and merging scheme of the soil moisture retrievals
themselves. Particularly, in view of the advances outlined irZAMore sopisticated error
propagation schemes need to be developed and validated.

Quality characterisationof the merged product should consider two potential sources of
errors. Firstly, uncertainties of the original product estimatéi be inevitablypropagated

into the merged product while, secondly, additional uncertainties may arise during the
merging process itself. If we assume that the errors of the individual retrievals have been
rescaled into an equivalent dynamic range (e.g., that of GiNI&®), and arenormally
distributed and uncorrelated, the error computation can be written as:

o ~2
. nar Q .
Siﬂ’:aiﬂ?%g G (5.5)

S 6
With %gbeing the partial derivative of merging functidério variablex. As the expected
GHh =

alternative mergingschemes are weighted linear combinations of the sensor based soll
moisture retrievals, it will be quite straightforward to apply (5.5) in the case of stetaty
conditions. Nevertheless, in the case of gradual trends or breaks (e.g. land cover change)
more careis needed.

5.2.2 Standard Statistical Measurements

The interest in evaluation studies of climatological and environmental model datasets has
grown rapidly (Willmot and Matsuura, 2005). Such evaluations provide the basic means of
assessing the performanag models and algorithms. Interest has also arisen in determining

13
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which statistical measures should be recommended and how these differ based on an
application. The commonly used evaluation measures in soil moisture campaigns include
bias, rootmean squae error (or difference), both biased and unbiased, and correlation
(Broccaet al. 2011; Gruhieret al, 2010; Rudigeet al., 2009). The evaluation statistical
measures, which form the basis of current ermraracterisationof satellite-derived soil
moisture datasets, are described in this section.

A clear understanding of standardisation methods is essential to deriving an appropriate
error evaluation approach. Therefore, typical measures of standardisation (Unit
Transformation, Linear matching, CDF rhatg, and SWI computation) are firstly
introduced. Successively, commonly used measures of absolute difference (RMSE, mean
average error, mean bias) and of relative agreement?(and rs and Covariance) between

the models and the algorithms are introdwt@nd interpreted. It is notable that while the
absolute measures assess the effect of random and systematic errors, the relative measures
appraise the association of phasing between separate datasets. Furthermore, relative
measures usually normadi the @solute measure by dividing it either by the dataset itself,

or by its variance or standard deviation. In doing so, it makes it spatially comparable and
independent of the absolute magnitude.

5.2.2.1Statistical measures of standardisation

Soil moisture productsam be (i) derived from the remotely sensed datasets, (ii) measured
in-situ at ground level, or (iii) modelled with the models describing water dynamics and
water use. This variety of different estimatetrieval and modelling strategies can result in
there being notable differences in the represented a) depth, b) spatial extent and c) units.
Such differences prevent measuring an absolute agreement between thestéimes (Brocca

et al,, 2011) and assimilation of the dataset into models (BeeTodling, 200). In order to
minimize the systematic biases in the soil moisture datasets, transformation or
standardsation methods are usually adopted. These include:

wUnit Transformationthe conversion of the dataset values into values of volumetric
soil moistue,

wLinear matchingremoving the differences in the mean or in both the mean and
variance of two timeseries,

wCumulative Distribution Function (CDF) matchiagnonlinear approach which
applies mathematical relationships to convert the climatologyoe dataset into a
second datasetand

wSoil Water Index (SWI) computatioan approach that simulates soil moisture at
deeper layers using an exponential filter.

14
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Table 2 suggests which of th@bovementionedapproaches should be used to remove
systemaic differences caused by scaling, differences in depth and differences in units.

Table2 Sources of systematic differences between soil moisture datasets and suggested methods for
their removal.

Source of Systematic difference | Method to remove it

Differences in scaling CDF matching

Linear matching

Differences in depth SWI filter computation
CDF matching

Linear matching

Differences in units Unit transformation
CDF matching

Linear matching

5.2.2.1.1Unit transformation

Soil moisture produts can originate from situ measurements, from estimates derived
from Earth Observation sensors, and models based on water dynamics and water use. This
can lead to values being expressed in a variety of units.

The most commonly used soil moisture ungie the volumetric units. These express the
volumetric fraction of water in a given soil depthmater per nt of soil], or the depth of a
column of water contained in a given depth of soil [mm water per mm soil]. The volumetric
fraction ranges between Qcompletely dry) and 1 (full saturation) and is used in a large
number of soil moisture networks (i.e. OzNet, REMEDHUS or the AMMA) and satellite soil
moisture products (Advanced Microwave Scanning Radiometer (AWSBpecial Sensor
Microwave Imager (SSN)). To convert the brightness temperature retrieved from the
satellite products to volumetric unitghe Land Parameter Retrieval Model developed by
NASAandthe VU University of Amsterdam (LPRM) is used (éwvat, 2008).

Soil moisture datasets can albe expressed in relative units, which are commonly used for
microwave satellitederived soil moisture produs. These present a measure diange in

the retrieved signal relativg to its maximum dynamic range. An example of such dataset is
the Earth Resarce Satellite (ERWagneret al, 1999a), the Advanced Scatterometer
(ASCAT) (Bartalet al., 2009)and the Advanced Synthetic Aperture Radar ASAR GM (ASAR
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GM) soil moisture product (Pathet al., 2009).Backscatter measurements are converted to
soil noisture estimates by applying the TU Wien soil moisture retrieval algorithm (Wagner
al., 1999b), properly adapted to the acquisition sensor.

Another unit for expressing soil moisture is the Gravimetric Water Content defined as the
ratio between the mas of water and the mass of dry matter. The gravimetric method is a
commonly used method for calibration of other indirect measurements. Less common soil
moisture measures of soil moisture are the Fraction of Saturation and the Plant Available
Water (PAW)Fraction ofSaturation is defined as the fraction to which the pores are filled
with water. Soil usually contains a pore fraction of less than 0.5. If this fraction is completely
occupied by water, the soil reaches its maximum soil moisture saturatioeefvldefinition

to envision the Fraction of Saturation is defining it as the volume of water to volume of
voids. PAW representie portion of the soi® water holding capacity that is available to be
absorbed by a plant.

The transformation of these unitmito a comparative format is a critical prerequisite for
successful evaluation of the soil moisture datasets.

Volumetric units are becoming standard soil moisture units in Earth Observation (2brigo
al., 2010) and have been selected as the referenaaddrd for unit transformation. Here, a
set of transformation techniques are presented that serve to transform the introduced soil
moisture measurement units, to standardised volumetric soil moisture units.

The conversion of gravimetric soil moisture tdurnetric soil moisture is achieved using the

expression:

g, =w, (5.6)
r

w

WK S NBI y'Ry represent the dry bulk density and water density respectively, and w
represents the gravimetric soil moisture value.

The transformatiorof PAW to volumetric soil moisture is achieved using the expression:

q, = PAW - qWP’ (5.7)

GKSNBE t! 2 NBLNBaSyida (K Swethe deryhdinent v@iting pointd £ S
Below the wilting point, water is retained by the soil matrix andas accessible to plants.
The wilting point depends on soil properties such as soil texture, and varies geographically.

The conversion of the Degree of Saturation to the volumetric soil moisture is achieved using
the expression:
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q, =P, (5.8)

GKSNBE t RSTAyYySa (KsSolumgticlsdil mbidunPlttisietident that fe
quality of the conversion strongly depends on the quality of the porosity estimate.
Soil moisture data retrieved from scatterometers are provided in relativesumhese can be

directly converted to the absolute volumetric units (Mladenost al, 2010) using the
following expression:

Ty

o (5.9)
.

IODOI
cc&
Q

@@359

GKSNBE {a NBLINBASY(alHyR ®ddlysd bulk 2ensgity ar@derdsity dzNBS >
of soil particlesNB & LJS O (i A @eprieseriEs the yestdua) soil moisture. For a high quality
estimate of the volumetric soil moisture also the three ancillary parameters need to be of

high quality. In the case of only low quality estimates being availaher transformation

methods need to be used such as CDErarMatching.

Unit transformation methods do not account for shortcomings of the ancillary data (i.e.
texture, porosity, and organic matter content). They also do not account for shortcering
the measurement technique itseland for the differences in scaling and depth of the
different measurements. To limit the data usage restrictions implied by such shortcomings,
methods such as Linear Matching and CDF Matching are used.

5.2.2.1.2Linear matching

Because of dissimilarities in the estimatgrieval and mod#ing strategy, differences in the
represented depth and spatial extent of soil moisture occur, leading to different values of
the mean and variance of the datasets (Dirmegeml, 2004). Sucldifferences should be
removed (Broccaet al., 2011)in order to efficiently carry out a comparative evaluation of
the distinct datasets. Likewise, removal afyabias is recommended for data assimilation
techniques(Deeand Todling, 200Q)allowing for statisticayl optimal analys. To remove the
differences in the mean and variance a linear matching technique can be Tgeémove
higher order moments a nonlinear Cumulative Distribution Function (CDF) matching
approach is recommended.

For linear matching twomproaches are commonly used. The first is based on the application
of a regression equation between two evaluated datasets, minimising the RMSE (RMSD)
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between the compared datasets, and removing the differences in means (Jaeksn
2010).

A second aproach removes differences in both the standard deviation and the mean
(Brocceet al., 2010) In particular, he matched datasey is computed using pairs ofq, ¥,)
as follows:

= ste Or’i)(xori - )_(or)+ y
stde(y,) " (5.10)

of allyi andx represents the rescalexh.. The formula can be rewritten into a linear form as

wherei =1,...n, nis the total number of elements;,,. is the mean of abkor,i, ¥ is the mean

X = BX,, +A, (5.11)

where the local coefficiais A and B are defined as

At stdevy,) _

=y- X, 5.12
y stde@mi ( )

and
stdeyy, )

B= 5.13
stde%;m,i ) ( )

Here, parameter B mirrors the difference in the variability of the individual datasets, whilst
parameter A reflects a combination of differences of both treiability and the mean.
Implicitly, these parameters also refer to different soil types, land cover and climate (Scipal
et al, 2008).Importantly, the transformed dataset automatically shares the climatology of
the reference data or model.

5.2.2.1.3Cumulative Dbstribution Function (CDF) matching

The Cumulative Distribution Function (CDF) is a-lmmar approachwhich removes the
differences due to different depth, scaling and calibration by applying mathematical
relationships that transform the climatology ofhe into a second dataset. It is performed by
matching the cumulative distribution functions of two datasets, using a linear or polynomial
fitting. Depending on the order of the fitted polynomial, equivalent number of moments is
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mitigated. For example, ar@ order polynomial could correct differences in the first four
moments (the mean, the variance, the skewness and the kurtosis) (Detisth2005).

The actual computation of the CDF function is performed in three separate steps.
I.  The datasets are rankie

II.  The differences in soil moisture between the corresponding ranks of the two datasets
are computed.

lll.  The observation operators are computed as a polynomial fit between the computed
differences and the ranked observed soil moisture (Drusthal, 2005). These
remove systematic differences between both datasets. Importantly, the observation
operators are defined by the type of the observations, in particular, by their specific
statistical properties and distributions (Drusehal., 2005)

5.2.2.1.4Soil Water IndeXSWI) computation

The climate user community hanphasisedhe importance of a longerm satellitebased

root zone soil moisture product. As the root zone cannot be directly sampled by the
microwave sensors, approaches need to be developed that propatjetesurface soil
moisture measurements to the root zone. The Soil Water Index (SWI) is an exponential filter
able to simulate the soil moisture value at deeper soil layers, on the basis of soil moisture
measurements of the shallow soil and an exponentrafife designed to mimic fluctuations

in soil moisture over a scale of progressively greater soil depth. The filter relies on the
analytical solution of a differential equation and assumes that the variation in time of the
average value of the soil moiswuprofile is linearly related to the difference between the
surface and the profile values (Wagretral., 1999b). In this study the version of the SWiI
introduced by Albergedt al. (2008) is used:

SWI, =SWI_, +K, [SSMt,)- Swi_,], (5.14)

with the gain Kat time t, given by:

K, = Kot (5.15)

_a;Etn'tn-lg !
¢ T =
K,.,*te

where T is theime length that characteses the temporal variation of soil moisture within
the root-zone profile and gain Kranges between 0 and 1. For the initsalion of this filter,

19



=N soil moisture Comprehensive Error Version 1.0
ﬁ CharacterisatioriReport,Revision 2 (CECH Date7 July 2017

Ko =1 and SW = SSM¢) are usedwhere SSMisthe surface soil moisture given in3m or

% saturation. The three parameters involved in defining the exponential filter, namely the
characteristic time scale, the factor used to define the time period over whichiltiee is
applied and the minimum number of measurements used, need to be defined in a way that
maximees the correlation between the modified satellite data (SWI) amdsitu data at
certain depth.In situmeasurements from the International Soil Moistukeetwork (ISMN)

and soil data from the Harmonised World Soil Database (HWSD) will betaysaxtis the

end of Phase 2 of the CCI SM project to find thealues that best represent specific depth
intervals [ABR2].

5.2.2.2Measures of absolute agreement

Measures of bBsolute agreement are expressed in the units of the original datasets and refer
to the positive magnitude ahe dissimilarity betweerwo variables. The measures outlined
here provide informative summaries of variable dissimilarities within comparative so
moisture datasets. The most frequently used include Mean Absolute Error (MAE) and Root
Mean Square Error (RMSE), however there also exist other derivative measinieb
together allow us to explore and ascertain the nature of absolute error associaitd
satellite-derived soil moisture datasets.

These measures should be interpreted carefully as they are influenced by the mean and
variance of the datasets. For example, increasing MAE and RMSE can be explained by
increasing error in the datasets. Howe¥, an increase in the mean or variance can also
potentially contribute to their value.

A brief summary of the current measures of the absolute agreement is providede
following sectionslt should be highlighted that prior consideration of gmocessing steps
should always accompany the use of the absolute measures. For example, it is of limited use
to characterise bias in applications where data matching is applied, given that matching
removes the difference in the mean and variance.

5.2.2.2.1Mean AbsoluteError (MAE), Mean Bias Error (MBE), Mean Percentage
Error (MPE)

The Mean Absolute Error (MAE), the Mean Bias Error (MBE), and by extension, Mean
Percentage Error (MPE) are absolute measures of error, and do not normalise the final
result. The Mean AbsolatError (MAE) of a sample mmeasurements is expressed as:

é in=1|(xi - Yi )|
n

MAE = (5.16)
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where x and y; are two continuous variables witis being the representation of the true
value. The measure returns the average absolute magnitude of eaclredifie If it is
necessary or useful for the specific application to know the positive or negative nature of the
error, the Mean Bias Error (MBE) should be considered:

MBE=Z4",(x - v)=(x- 9) (5.17)

where x; and y; are two continuous variables witl being the representation of the true
value. MBE should be interpreted cautiously (Willmaotd Matsuura, 2005), as it indicates

the average model bias. For example, two independent datasets with the same mean can
result in an MBE approaching zero.

The MBEcan be also expressed in a percentage format, providing the Mean Percentage
Error (MPE) through the formula:

MPE:lan_llodxl - yl)
n—" Yi (5.18)

for n samples, whereg andy; are two continuous variables, angis the representation of
the true value. Incontrast to MAE and MBE, MPE is rddimensional in nature, expressing
error without the constraints of units.

5.2.2.2.2Root Mean Square Error (RMSE) and Root Mean Square Difference (RMSD)

Root Mean Square Error (RMSE) is currently the most commonly used abselasere of
accuracy in the case of unbiased or matched datasets, and precision. It has been used in
previous evaluation studies of soil moisture datasets (Jacks@h, 2010; Doubkovét al.,

2012; Draperet al., 2013). RMSE signifies the closeness aj tadependent datasets
representing the same phenomen, one of which represents the true set of values. In the
situation where none of the independent datasets are assumed to be true, the term Root
Mean Square Difference (RMSD) is appireead In soilmoisture comparative evaluation
studies, the reference dataset is typically represented by thesitu measurements.
However, such data only reflect a postale portion of the soil conditignvhereas satellite

or modetretrieved soil moisture productsrpvide soil moisture information at coarser
spatial resolutios. Therefore, ground measurements cannot be considered as the "truth",
and the term RMSD should be used rather than RMSE. In this sense, RMSD provides
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information about the dataprecision but not about their accuracy. Both measures are
defined for two continuous variablegandyias follows:

"d'lin:l(xi - Y )2

RMSE orRMSD:\/ -

(5.19)

wherei =1, X 2r and n is the maximum number of measurements. BRMSE and RMSD
alter the magnitude of eachiifierence through its squaring and subsequent rooting. The
squaring is performed to remove the potential negative value. However, this has the
potentially negative consequence of quadratically penalising the bias between parameters.

It should be noted theRMSE and RMSD reflect not only the average error but also the
variance in the error and the number of data point (Willmattd Matsuura, 2005)i.e. they
become increasingly larger than the Mean Absolute Error (MAE) as the distribution of the
error magniudes becomes more variable. To assess the deakeperformance of RM3Ee

central tendency in RMSE needs to be removed. This can be achieved by its sadionali
with y,themeanoyQa > | a F2tt2gay

NRMSE ornRMSD), = ME (5.20)
y

The final measure gives an estimate of the averaged, quadratically semhatlifference
between two datasets normaied by their mean. Thase ofnRMSEm (nRMSDm) allows for
spatial comparison as it is not affected by its central tendencyeNeeless, it does not
remove the effect of the error variancevhich has been highlighted as complicating the
actual interpretation of RMSE (Willmotind Matsuura, 2005). This may be solved by
introducing an independent estimat@RMSBEsthat uses the sindard deviation to mitigate
the error variance as follows:

NRMSE or nRMSQ:iSE (5.21)

stdeyy)

Furthermore it is also worth considering that RMSE, unlike MAE, quadratically penalises
errors and reflects their variance. For these reasons, MAB&@s recommended by several
studies as a more suitable measure of average error than RMSE (Wilinobiatsuura,
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2005). To keep consistency with the existing evaluation studies, it is recommended to
compute and compare both the RMSE as well as the MAE cduld be extended to involve

a quantification of the difference between the MAE and the RMSE, which may be used as an
additional evaluation measure providing information on the variance of the errors. The
smaller the difference between the RMSE and M&E the better the potential of the RSME

to represent the average error and the less it is affected by variance in the errors.

5.2.2.2.3Covariance

Another absolute measure, the covariance, assesses the type and level of association
between two continuous variables andyi. The calculation and use of covariance forms an
integral part in the subsequently outlined errors of relative agreement, for which a brief
outline has been included here. Essentially, covariance measures how much two random
variables change togleer. The covariance far=1, X, n andn, the number of measurements

(or sample size), is defined:as

Co\x,y)=—1= (5.22)

where X is the mean of alk, y is the mean of a¥;.

Covariances anabsolute measure in the sense that the values are not stanszgidand are
dependent on the chosen scale. Whemndy; vary independently, the separate parameters
(y, - y)and (x - X)may be independently positive or negagi This can potentially result in
their mutual cancBation, and therefore a very low covariance value. In contrast, high
dependency of the dataset would cause correspondence in positivity/negativity, thus
increasing the final covariance value.

5.2.2.3Measure ofRelative Agreement

In many cases, information pertaining to the nature of the association between two
variables, and not solely the nature of their dissimilgrity required. To extract such
information, we use measures of relative agreement, assessat worrelation statistics.
Relative agreement refers to the potential existence and strength of an association between
two variables. Outlined here are two correlation measureghich serve to convey
information about such associationsiamely he PearsonProductmoment Correlation
Coefficient £), used when the variable datasets are parametric in natanelthe Spearman
Rank Correlation Coefficient), for datasets which are ngparametric in nature.

5.2.2.3.1Pearson Produeimoment Correlation Coefficient (r)
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Adimensionless covariance, the Pearson correlation coefficient (r), is retrieved by division of
the covariance by two standard deviatiostslex) andstdewy):

_ Codxy) _ ..
- stde{x)stdeyy) CO\(X 4 ) (5.23)

where X represents the standard normatandom variable for which X" =0 and
stde\(x*):l. The same applies foy . This can be further expanded by incorporating the

formula for covariance (5.22), and the definition of standard deviation for \@esx andy;
producing:

“a 706 2y - 9)
r= (5.24)
a2 tan - s
n j=g \7 n =1\

where X is the mean of and y is the mean ofyi. The achieved value can lie between 1
and -1, which indicate a perfect positive and perfect negaticorrelation respectively. A
perfect positive correspondence is achieved if the variation; iis fully explained by the

variation inyi. The coefficient effectively provides a measure of how well the two datasets
are associated in their phasing.

Toobtain a more meaningful interpretatioof r it is useful to compute & square ). Known
as the coefficient of determination? represents the proportion of total variation iy that
can be attributed taalinear relationship with corresponding valuiesx, and is expressed as:

n - ¥)- n 'bo'bl'z
L_oanl 321 n (3|=1;>;.2 x) (5.25)

where b, and b, represent the maximum likelihood estimate for the intercept and slope

respectivelyas computed between the pairsi,(y). In a pefect correlation (whereg = +1 or
r =-1) variation in one of the variables is exactly matched by a corresponding variation in the

other. The parameter -2 indicates the extent to which other factors (outsideandy:) are
influencingx andy.
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If the datistical significance of the correlation is knownand r? can quantify its strength.

However, if the significance is unknownand r? are rather poor statistics to gauge this
strength. Furthermore, as both and r? do not factor in the potential effas of x andy
RFEGFasSiQa AYyRAGDARdzZ f RAAGNRAOdziA2Yyas O2NNBf |
information addressing these issues, an additional auxiliary test must be performed to
ascertain the significance levelofor r?).

Forasmall numbeiof samples and for cases when data follownbrmal or twodimensional
Gaussian distribution around their means, the following statistic

(5.26)

A& RA&GNAOGdzI SR I LILINRtHistNDLLONS i &aseb df1z&0 o@l&ibn { G dzR S
(ro=0) withn-2 degrees of freedom anaequal to the total number of measurements. Thus,

as a final step, this null hypothesis is tested by comparing thigh t-table tail probabilities

for an appropriate significance level. The measure iselyidised in the analysis of soll

moisture data (Reichlet al. 2004), being applicable both spatially and temporally, whilst an
excellent overview of the measure and its variations has been compiled by Ramgrs
Nicewander (1988).

5.2.2.3.2Spearman Rank CorrelatiCoefficient (g

When soil moisture data arenon-normally distributed, nor is this achievable by
transformation, the norparametric rank correlation known as Spearman Rank Correlation
(rs) may be used (Vachawd al., 1985; Coslet al., 2004). This is b useful when assesg

the spatial stability (Coslet al, 2004) and temporal stability (Martindzrnandezand
Ceballos, 2005pf the soil moisture field The measure uses the ranks of tkeand vy
variables in the place of raw data values, which beeothe basic data used in the
correlation test.The coefficientsis calculated using the expression

_, ¢6gd°e

re=1- 5.27
G 62

where n is the number of sample units, ardlis the difference between ranks. Whilsf
provides a good indicator of velther the correlation is strong or weak, it must be checked
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against the set of known critical Spearman Rank Correlation Coefficient values. This
ascertains the likelihood that the value obtained arose by chance in the samplends.

5.2.3 R-Metrics

Crow (20Q) introduces the Rnetric as a tool to quantify the value of soil moisture
retrievals. The Rnetric is based on the notion that an overestimate of the simulated error in
rainfall would require removal of water andice versaan underestimate of the sintated

error in rainfall would require addition of water. The water quantity would generally be a
function of soil moisture. Crow (2007) translates this notion into equations that provide
predictions by using the Kalman Filter equations (e.g. Nichols, 2@} the control
variable (the variable updated in the model) being the antecedent precipitation index (API)
and the assimilated variable being soil moisture (these are the observations input into the
assimilation scheme). The Kalman Filter (KF) equatoe:

er = Mn-lX:-l
F)nf = I\/ln-ll:)ne-‘llvI r-:—-l + n-1

Xr? =sz +Kn|_yn - HanEJ
Kn = Pan:[Rn -'-Hnl:)anr:]_l

P =[1- K H,|P' (5.28)

In the Kalman filter equations above, the first equation represents the forecast of the model
fields X' from time-step n-1 to n (updating the previous analysi€), while the second
equation calculates the forecast error covariaréefrom the analysis error covariand&

and the model error covariand®. The third and fifth equations are the analysis steps, using
the Kalman gairK defined by the fourth equationQ and P* are assumed to be uncorrelated
(e.g. Bouttier and Courtier 1999). For optimality all errd®sdbservations§, forecast;Q,
model) must be uncorrelated. In the above equatiptiee observation opeator H and the
model operatorM are assumed lineaiThe Extended Kalman Filter (EKF) is an extension of
the original where the observation and model operators are Horear (see Nichols, 2010).
The superscripT denotes the transpose of a matrix.

The ke relationship in the Rnetric formulation is between APl and soil moisture, and this is
provided by the third equation in the Kalman Filter suite (5.28) that updates the model
forecast to provide the analysis. API after and before updating is represdmytetiand X,
respectively, while soil moisture is represented yoyln the Crow(2007)formulation the
observation operator as applied on API (before updating) is calculated as a least squares
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regression line (slope, intercepta) for the observed longerm relationship between API

and soil moisture retrievals (represented fy9, and is written:Hx = a+bX. The difference
between the model forecast' and the analysig? (x2 ¢ X/ is the incrementand includes the
difference between the observation sisilated and its model counterpary  Hx); this
difference is called the innovation, and plays a key role in data assimilation (Talagrand,
2010). In the formulatiorby Crow (2007) the innovation is writtengrsg a ¢ bAP1, where
AP1is the API befa updating (this i in the Kalman Filter equations above). In the Crow
(2007) formulationx® is APt (API after updating). In Crow and Zhan (2007), a humber of
steps are outlined for optinsing error in soil moistureR) and the model error@) such tha

the time series of the innovations are serially uncorrelated and has a second moment equal
to 1.

Translating the third equation in the Kalman Filter suite of equations into tmeetRic
formulation by Crow (2007) a rainfall error overestimate is assded with a negative
increment and a rainfall error underestimate is associated with a positive increrimentth
cases, one expects a negative correlation between these quantities (rainfall error and the
increment). The rainfall errors are calculated he tifference between currently available
global precipitation products from satellites and higher quality rain gauge products available
only in datarich areas of the globe.

The Rmetric introduced by Crow2007)(Raue thus considers the negative colaton R
between the bias in the rainfall error and the increment, and is defined as the negative of
this correlation, Rawe = -R The central hypothesis of the-rRetric method is that the
magnitude of the negative correlatioR can be used as a proxgrfthe overall information
content of remotely sensed surface soil moisture in global land surface modelling
applications.

The Rmetric approach needs the following inputs:

71 Soil moisture retrieval from a satellite

1 Rainfall data from one or more satellitethese data are commonly used to drive a
land surface model for API (see belpw)

1 Longterm, preferably multiyear, rainfall data from a network of rain gaugésese
data are commonly used as a benchmark to assess rainfall garmuls

1 A land surface modele.g., for APIl. For example, one could define a simple
relationship for the API for daiyas follows: ARE gAPL1 + R, where Ris satellite
based precipitation andis the API loss coefficient (see eq. (1) in Crow, 2007).

The Rmetric approach isested in Crow (2007) using a synthetic twin experiment (see, e.g.,
Reichleet al, 2002, for a discussion of twin experiments in data assimilgtiim}y test
establishes that th&aue metric is a weldefined function of both the underlying accuracy of
soil moisture retrievals and the quality of rainfall observations used to calculate model
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based soil moisture estimates. As discussed in Crow (2007), this interpretation is not
affected by errors in benchmarking the rainfall information, temporal gapsoihmoisture
retrievals or errors in model parameters.

In Crow (2007) the Retric approach is tested for real datasets concerning the added value
of various remote sensing soil moisture products for land surface modelling applications. The
results show hat Raue provides an effective proxy for the accuracy of soil moisture
retrievals. These results also show that as the accuracy of satedided global rainfall
products increases, it becomes increasingly difficult to contribute added value to model
predicted soil moisture. Finally, larg&.aue coefficients can be interpreted as reflecting
higher accuracy in soil moisture retrievals and greater value for land surface modelling
applications. The information provided by tRue coefficient can thus & used to optinse

soil moisture retrievals.

The positive results reported in Crow (2007) have two caveatthdiyesults presented on
Riauve are based on a very simple API land surface madedii) the approach is intended to
complement, not replacetraditional validation techniques based on using soil moisture
groundbased networks to evaluate remotely sensed (i.e., satellite) soil moisture
observations. Addressing the first caveat by using a physicadigd, more realistic land
surface model wouldllow consideration of a wider range of model errors, and not simply
the impact of precipitation uncertainty. However, increased modelling complexity also
brings increased ambiguity regarding the interpretation of the data assimilation results, a
need fora more complex data assimilation approach and, ultimately, increased technical
difficulties for adoption of the Rnetric method by users.

Improvements in the approach described in Crow (2007) have been implemented in two
papers by Crow and Zhan (2007) abbw et al. (201(). In Crow and Zhan (2007), the
approach is extended geographically from limited domains over the continental USA to the
entire continental USA, and extendedy sensor type by considering microwave
scatterometer and thermal remote sensings well aspassive microwave radiometry. In
Crowet al. (2010) the approachoy Crow (2007) is applied with two changes: (i) anomalies
instead of absolute values are consideradd (i) a RaucliungStriebel (RTS) filter (Rauch

et al, 1965) is appliethstead of the Kalman Filter. This approach is applied on anomalies of
precipitation and soil moisture, and follows the notion that for many land data assimilation
applications, a more important reflection of the value of soil moisture observational
information is skill with regard to detecting soil moisture anomalies relative to the annual
cycle. The use of the RTS filter takes account of theraakime nature of the Raue
methodology (i.e., we are not interested in shoerm forecasts as in Numeric#Veather
Prediction), and the advantages of implementing a smoothing technique (as is the case for
the RTS filter, but is not for KF) in which model predictions are updated by both past and
future observations.
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As emphased in Crowet al. (2010), the Raue approach is intended to supplement, and not
replace, more traditional soil moisture evaluation activities based on grdnasegd solil
moisture networks. As noted in Crow (2007), Reuemetric is blind to bias and/or dynamic
range errors and providesnly a measure of skill with regard to change detection. While
such change detection is often cited as the key contribution of remotely sensed soil moisture
for many data assimilation activities (see, e.g., Cetval., 2005; Reichlet al., 2008), it is

not the only metric by which soil moisture products should be evaluated. In particular, bias
and rootmeansquare error (RMSE) calculations must be made versus gfoaset
observations or through the implementation of an alternative technique designeddover
RMSE information. Finally, tH&aue metric is best interpreted as a measure of added skill,
sensitive to both the accuracy of a soil moisture product and the accuracy of a rainfall
estimate driving a moddbased estimate of soil moisture. Thitsfin with the notion that
measuring the added value of remotely sensed observations relative to a reference piece of
information is important for assessing the higHevel value associated with an assimilated
soil moisture product.

Recently, Parinusset al. (2011a) crosserified Raue €valuation results with those of the
Triple Collocation (TC) verification technique (see, e.g., Detigb, 2010, for its application

to soil moisture observations). EssentiaRaueand TC should contain the sarméormation

if both evaluation procedures are operating correctly (Entekretbal., 2010). Parinusset

al. (2011a) compared both performance metrics on a global scale taking every single
terrestrial climate system into account, and showed tRafueand TC are strongly correlated
(R=0.90). The high mutual consistency between TCRg: was shown to break down at
extreme vegetation levels such as deserts and rainforest. This breakdown was due to a lack
of variation in theRae suggesting thaRawe may saturate at extreme conditions. Desert
areas have only few precipitation events, and for these conditionsRhge verification
technique is likely to require sampling across a large number of such events and may,
therefore, lose sensitivity in vegrid climate regions. For heavily vegetated conditions (e.g.
rainforest), the deviation could be explained by the fact that the soil moisture signal
becomes almost entirely masked due to the overlying canopy. When these two extreme
vegetation regions werenasked the correlation coefficient between the two evaluation
techniques was higdr (R =0.95). This high level of consistency between thaeRic Ralue

and TC techniques lends confidence to their interpretation as robust evaluation metrics for
soilmoisture retrievals.

5.2.4 Triple Collocation

5.2.4.1Theoretical Overview

The validation of soil moisture products is intrinsically limited by the lack of knowledge of
0KS aiNMHziKéY GKS | OlGdzkt @lItdzS 2F GKS LI NI
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absolute certaing, and spatial as well as temporal mismasloften exert a confounding
influence. The triple collocatioffTCYi SOKY Alj dzS R2Sa y2i0i NXBI dzA NB
referencedatasetand permits the estimation of the error variance of each sengmvided

that certain assumptions about the error structure are mé&w{ebacket al, 2012). Its
popularity has grown considerably over the last decade. The method was introduced by
Stoffelen(1998)in order to study the error characteristics wind vector data derived from

a model, buoy measurements and scatterometer observatioffse triple collocation
technique has been used in several studies to assess the qahbtil moisture estimates
from models, irsitu data and remote sensing prodac(e.g. Scipatt al., 2008aDorigoet

al., 2010 Miralleset al.,, 2010 Loew and Schlenz2011; Parinussat al., 2011b; Gruberet al.,
2013).

TCassumes that there are three independent sets of measurements describing the same
phenomenon, in our case variations in soil moisture over a specific location. In addigon,
assume soil moisture measured by sensoat time t (g:) is linked to unknown true soil
moisture ¢' by an additive bias termh and a multiplicative bias tern together with a
random errore;

Gneas=a + Q@' +e (5.29)

The aim of theTCtechnique is to provide an estimate of the varianceeofAssumptions
regarding the statistical characteristics of the error terme arucial for the validity of the
collocation technique, so we presuppose that:

1. The correlations between the errors of different sources at the same time step are 0,
i.e. zero cross correlation,

2. The correlations between errors at different time steps loé samedatasetare 0, i.e.
zero autocorrelationand

3. The three datasets exhibit a linear relationship

To meet these conditions, we can use three independent data sources describing soil
moisture, e.g. a radiometdrased, a scatterometdnased, a TIR badeand a model or i
situ dataset. The three datasets are linked to the true soil moisture in the following way:

g =a,+b@+e (5.30)
g,=a,+b,@g+e, (5.31)
G =a,+ b, +e, (5.32)
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In a second step, one of the datasets is defiras the reference dataset. The other datasets
can be transformed into the data space of the reference dataset using, e.g. a linear

regression method or CBRatching.

The fitting parameter$ 4, i 1, "2 andi > only represent the additive and multiplicative bias
between the particular dataset and the reference dataset. The random errors giréhst

true errors but also expressed in the data space of the reference dataset. As the
multiplicative biase$ are known, an inverse transformation back into the data space of the
particular datasets would be possible, but a reasonable comparison oérioes requires

7. =Q+e

a =q+e,

G, =g+é&;
_49 a4, _6
—_— - ==, e = _<
q, b, b, P .
«_g; A4, _ 6
=—- —, e =
q, b, b, ) ]

them to stay in the same data space.

Assumed that the assumptions of uncorrelated errors are fulfilled, the random error can
then be calculated by crosaultiplying the values and taking the average of an appropriate

number of samples:

€ - 6’2* =q,- qz*
6-e =q-q

€ -6 =4, - g,

e’ =(la-a Ja-a)

e’ =(la-a o - o)
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%ﬁ%h:%mﬁ-%» (5.43)

In order to meet the statistical requirements, a sufficientlygla number of observations is
crucial. Zwiebaclet al (2012) showed that for a relative uncertainty of 10% (i.e. the
standard error relative to the quantity of interest) 500 samples are neeegli(e5-2).
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Figure5-2 Estimated variance as function of the number of samples N, based on a synthetic dataset.
The solid lines indicate th2 SE range around the actual va(daviebaclet al., 20120).

Results from Phase 1 indicate this number imiagble for model andn situ data. The
satellite microwave datasets constitute a limitation in this respect, especially for areas with
dense vegetation cover, or with snow cover/frozen conditions over part of the year.
Therefore, several authors adoptech pragmatic threshold of 100 observations
(e.g.Dorigoet al., 2010 Scipakt al., 2008).

5.2.4.2Application and interpretation of output

The esult oftriple collocation is an estimate of the error variance. Thus, the results do not
provide information on the absolute deviations as expressed by bias and RMSD. It was stated
F6o2@0S GKIFIG Ay 0aSyO0S 27F (KSsdiddnfas afréfeielizé K ¢ 2
to which the other datasets are rescaled. Hence, errors of all datasets are expressed in the
dynamic range of the reference dataset. The choice of the reference dataset affects the
absolute values (and in some cases the unit) ofetvers but does not influence the relative
magnitudes of the datasets with respect to each other.

TCcan be applied either to the original retrieved soil moisture values (e.g. ®&tiphl 2008)
or to the anomalies from the lonterm predicted valuessgasonalities) (e.g. Doriga al.,
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2010). While using original values provides information on the capability of the soil moisture
products in representing general temporal patterns of soil wetting and drying, the anemaly
based approach gives us more a@terinformation on the ability of the different datasets

to capture single events of drying and wetting (e.g. due to rainfall). As a consequence, the
anomalybased approach tells us less about absolute deviations between datasets, e.g. like
induced by a deiating seasonality. As it is the most commonly used in the literature (Dorigo
et al., 2010; Mirallet al, 2010; Parinusseat al., 2011b), the anomalpased approach fofC

has beenused for the validation of the CCI SM product. Obviously, it is critcadmpare

the coarse scale land surface model and remotely sensed data with poisituin
measurements as the obtained errors will also contain scaling errors (Mistligls 2010).
Furthermore the three datasets may show different temporal samplingeivals. Hence,
errors may slightly inflate due temporal collocation discrepancies. Spatial divergences may
also occur in a vertical direction as measurements represent different sampling layers.

5.2.4.3Recent advances isoil moisture triple collocation analgsi

To date, triple collocation analysis is one of the most important meshfod the globakcale
evaliation of remotely sensed soil moistudatases. Since its development, many studies
have been carried out to investigate the limitations of TC analysist of which are related

to violations in the underlying assumptions that are made on the structural properties of the
considereddatases. Suchassumptions are often considered to be unique to fiémethod,

yet most of them are also implicitly made ihet application of conventional performance
metrics A recent studyby Gruberet al. (2016a) provides a comprehensive disssion of the
assumptions made for TC analysis and itlh@act of possible violationsThe authors also
demonstrate the similarity betwen assumptions that are made for TC analysis, and those
made for the most important alternative performance metrics such as the linear correlation
coefficient and RMSD.

The TC hypothesis of linearity between the signal and errors assumes the presence of
additive and multiplicative biases as well as additive zmean random noise, and only
zeroth- and firstorder relationships to soil moistur&Vhile the covariance notation implies
such linear model bylefinition (Gruberet al, 2016a), several studies havattempted to
apply a nodinear model to the difference notation by usimgn-linear rescaling techniques
such aghe CDFmatching. However, common ndmear methodswill fail in matching the
underlying soil moisture signal unless thgnaito-noise ratos (SNR of the datases are
equal (Druschet al., 2005; Yilmaz and Crow, 2018% a consequence, bias in theTC error
estimatescanbe verified.

In TC analysidoth the soil moisture signal and random errarg assumed to be stationary
Such hypotleses are very unlikely tooccur for soil moisture datasetsys rainfall and
temperature patterns show a distinct seasonal pattern in most regainte world, which
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results in a ditinct climatology in soil maisre records.The climatology of the three sed
dataset candiffer due to the differentspatial suport or because the data are affected by
systematic error in captimg the seasonal patterrDifferences between the climatologies of
the datases manifest as nonlinearities between thefrhese nonhearities are of significant
importance as they mightccur at different time scales (Druset al., 2005; Su and Ryu,
2015).Consequently, their correction would involve mugitale rescalingSu and Ryu, 2015).
In particular, time series from individualatasets can be decomposed into variations
occurring at different timescales, and linear inthta relations have to bereated at
individual time scales separatelfss an alternative, many studies attempt to tackle the root
of the problem by individuajl removing the climatology of thdatases directly, that is
transforming the observations into the anomalgace (Stoffelen, 1998; Miralles al., 2010;
Crowet al., 2012;Draperet al., 2013). However, this requires a reliable estimatadrthe
climatology, which is susceptible to estimation errors and to the cholsmgth of the
intervals over which temporal averages are taken.

Assuming error stationaritin TC analysisequires that the error variance remains constant
throughout the several years of daervationsand, more importantly, betweerdifferent
seasons. A violation of this assumption does not harm réability of the estimated
average random error variance per dayt it limits its representativeness foparticular
subsets of the casidered tme period (Gruberet al, 2016a). Therefore, a timevariant
characterisatiorof errors might be beneficial for a large variety of applications (Grbwal.,
2005).An error estimate that is dominately large offseason errors would lead to wrong
judgemern of the quality of the datasetunder considerationRecently, Loew and Schlenz
(2011) proposed a dynamic TC approach to obtain continuous fortnightly TC error estimates
by applying TC analysis within -88y windows centred over all fortnightly periods,
respectively. However, the very short time period considered in this approach leads to an
extremely low sampling density and thus to very low precision estimates (Zwiebak
2012). Note that such a windowased approach can potentially account for ¢éawariant
biases between thelatases due to different underlying climatologiel, by contrast, such
time-variant biases are not accounted for, deviations between the different soil moisture
datases will tend topersist over time. They are thus closeblated to temporal aute
correlations of the errors (Zwiebaek al., 2013). The latter wileduce the precision, but not

the consistency of the estimated errafariances (Zwiebackt al., 2013).An alternative
approach to dealwith non-stationaity is to estimate multrannual windowbased error
variances for each day dfie year (Swet al., 2014a). However, this approach reduces the
sampling density significantlysacompared to a classical implentation, which could also
reduce the precision of the estimes Therefore, most studies rely amnual error variance
estimates based on a large sampling density rather than on less precise seasonal estimates
whose samplingincertainties might exceed their actual intannual variability.
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The assumption of erroorthogonality (i.e. the errors are independent from the true soil
moisture signal) is commonly made in TC analysis. However, its validity has not been
sufficiently investigatedThe firststudy onthis assumption was recently mady Yilmaz and
Crow (2014)They observed thahe error orthogonalityhypothesisdoes not hold fotypical
surface soil moistur@latases, yet the impact of this violation is generally negligible as the
bias in error variance estimatedue to error nonrorthogonality is dampened byhe
application of rescaling parameters or even compensated if the magnitude of-non
orthogonality is approximately the same for all considered data. However, if more than
one time series is northogonal, the non-orthogonality problem implies also @ss
correlated errors Combinations ofdatases which are commonlyassumed to fulfil tle
requirement of error orthogonality are any triplets consisting of (Active microwave
retrievals, (i) passive microwave retrievals, (iti)situ measurements, or ¥) land surface
models, provided thaheither of them is dependent on another member of the triplet (e.g.,
a model that assimilates the microwave retrievals) (Sagbadl.,2008; Dorigcet al., 2010;
Crow and Van den Berg, 20% Mraperet al.,, 2013).However, by investigating a set of these
four observation typesoth numerically and analytically, Yilmaz and Crow (2014) recently
found that significant nofzero error crosgorrelations exist everbetween active and
passive satellitdbased data.Moreover, they found that error crossorrelations have a
greater influence on the error variance estimates than +wothogonality because theyare

not compensatedvhen being of equal magnitude for dlhtases.

Furthermore,as reported in Grubeet al. (2016a), representativeness errors might occur in
TC analysis when it is applied on one p@icalein situ datasettogether with two coarse
scaledatases that have a comparable spatial representativeness (e.g. active and passive
satellite retrievals). While all prossesthat lead to soil moisture variations at the situsite
also affect thecoarsescale average, there might be soil moisture variations witiie
support of the coarsecaledatases that do not take place dhe site location (e.g., loca#d
rainfal events). In this case, TC vp#nalse thein situsite for its missing ability to resolve
coarsescale soil moisture featuresvhile the error variance estimate fahe coarsescale
datases will remain unbiasedn addition,applying TC on thredatasets with significantly
differing spatial repesentativenesssuch asan in situ site, a mediurrscale land surface
model, and acoarsescale satellitedataset TC will penade both the point-scale and the
coarsescaledatasetwith representativeness errgy while the error variancestimate for
the mediumscaledatasetwill remain unbiaseqGruberet al. 2016a).

Although the fundamental underlying maths and requiretssumptions have remained
unchanged over time, useful advanchkave been made in the way ¢hobtained error
estimates are presented and interpreted. In the literature, most studies investigate
variance estimates directhRecently, several studies jased to investigate errors relative
to the underlying signal, i.e., @sdirect or indiret representation of the SN@®raperet al.,
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2013; Swet al.,, 2014; McColet al., 2014).Another approach concerns thavestigation of

soil moisture sensitivitieby usingTC analysis (Stoffelen, 1998; McCell al., 2014). In
Gruber et al. (2016a), the proposed metricshave been reviewedand their similarities
demonstrated, highlighting alstheir respectve advantages and disadvantages by applying
TC analysis to soil moisture data acquimer the contiguous United States (CONU&N:

() active satdite retrievals(ASCATYii) passive satellite retrieva(@MSRE) and (iii) a land
surface mode[GLDASNoah) covering a time period of almost five yeaBy. combining the
investigation of the SNR (expressed in logarithmic units), unscaled error agsjaand solil
moisture sensitivities of theatases, Gruberet al.,, (20%6a) foundthat the SNR[dBdf ASCAT

is mainly dominated by its sensitivity pattern whereas the SNR[dB] of AMSRmainly
dominated by its error variance patterfrigure5-3). Suchoutcomes may have an important
impact on the development and improvement of novel and existing retrieval models as they
allow to pinpoint areas in which the sensor and/or the algorithm are prone to noise and in
which areas theyexhibit reduced sensitivity to soil moisture. Therefore, such areas can be
related to geographic features such as rainfall patterns or vegetatiod,targeting these
issuegequires different strategie@Gruberet al., 2016a).

5.2.4.4extended collation analysis

The increasing simultaneous availability of various active and passive sdiafitd sensors
inevitably leads to the need for a fully paramesed error covariance matrix, which is vital
for any statistically rigorous attempt to merge rtitource soil moisture retrievals into a
unified dataset While triple collocation (TC) analysis has been widely resedras a
powerful tool for estimating random error variances of coarssolution soil moisture
datases, the estimation of error crossovariances remains an unresolved challenge.

A first attempt to estimate offliagonal elements of the error covariance matrix was made
by Crowand Yilmaz (2014), by analytically combining TC analysis with Kalman filter
innovation analysis, commonly refed to as AuteTuned Land Data Assimilation System
(ATLAS). More recently, Craw al. (2015) proposed a Hi@ased approach to estimate off
diagonal elements by using lagged variables (i.e., temporally shifted representations of a
particular dataset) (Set al., 2014a) to generate dataset triplets with uncorrelated errors,
which can also provide consistent error variance estimates. Subtracting those estimates
from error variance estimates obtained from a triplet, using the corresponding dataset
together with two datasets that have correlated errors, yields an estimate of their error
covariance. However, error cressvariance estimates produced by this technique can
become biased in the presence of temporal error aotorelation (Crowet al., 2015).
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Figure5-3 SNR[dB] estimates (thpsoil moisturesensitivityestimates (middle), and (unscaled) error
variance estimategbottom) for ASCAT (left) and AM&R(right)over the contiguous United States
(CONUS). Rdtuare only shown for areas where all thrdatases achieve a significant positive
correlation (p<0.05) (Gruber et. Al, Ba).

Another extension of T@as introduced by Paat al. (2015). Italso tolerates the existence
of nonzero error crossorrelatons when using more than thregatases andsolves the
collocation problem through Pythagorean constraimsHilbert space, yet it does not yield
estimates for nonzero error cros®rrelations. Instead, it splits atbnsidereddatases into
so-called stuctural groups, within which thelatases are likely to have correlateerrors.
Random error variances of eadffataset in each group are the estimated as two
components: ae part that is correlated with the errors of the othelatases (within the
same goup), and the remaining pathat is entirely independent from all othedatases
(within all groups). Summingp these two componentsyields estimates for the individual
total error variance of alatases.
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Pierdiccaet al. (2015 recently proposed taextend TC analysis with a fourttatasetand to
solve this quadruple collocation (QC) problem as an -oetermined system of three
possible triplets in a least squares sense. This msasrihe uncertainty of individual error
estimates but still requires uncorrelated errors between all foudatases. Following
Pierdicceet al. (2019, the extended collocation analysis (EC) has been propos€duberet

al. (2016b) aiming at theestimaton of error crosscorrelations by generaing the TC
method to an abitrary number ofdatases and relaxing the assumption of zero error cross
correlation for certaindatasetcombinations.The number of allowed nonzero error cress
correlations betweerdatasetpairs is mainly limited by the overall numberasdtases used
and by their underlying error crossorrelation structure. Each member of tliatasetpairs
with assumed nonzero error cressrrelation must also be a member of at least atataset
triplet with fully independent errors. Furthermore, remaining degreesrekefiom can be
used to solve the collocation system of equations in a least squares sBasilesthe
estimation of a limited number of nonzero errarosscorrelations the EC technique
provides alsoerror variance and scaling coefficient estimates fbcahsidered dataset§ he
proposed EC method was evaluatey Gruberet al. (201@) using both a synthetic identical
twin experiment and real data experimeniBhesynthetic experiment shows that EC analysis
is able to reliably recover true error creserrelation levels. Applied to real soil moisture
retrievals from Advanced Microwave Scanning RadiomES (AMSR) Gband and X
band observations together witAdvancedScatterometer (ASCAT) retrievals, modelled data
from Global Land Data Assimilation teys (GLDAS)oah andin situmeasurements drawn
from the International Soil Moisture Network, EC yields reasonable and strong nonzero error
crosscorrelations between the two AMSR products(Figure 5-4). Nonzeroerror cross
correlations are also found between ASCAT and AEISHe EC method presented in
Gruberet al. (2016b) is readily applicable to an arbitrary number dditases, which would
facilitate the estimation of more nonzero error cresgvariance termse(g., when using
three passivadatases such as SMAP, AMSR2, and SMOS together with two datases
such as MetOfA and MetOpB). Therefore, it represents an important step toward a fully
parametersed error covariance matrjxwhich is vital for any gorous data assimilation
framework or data merging scheme.
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Figure5-4 Global error crossorrelation estimates for AMSR C and Xband soil moisture retrieval
White shading indicates areas where estingatid not converge to a meaningful value (Grudtesl.,
2016).

6 Input Data

This section will shortly introdie various datasets that have beesed for the validation
and errorcharacterisationof the soil moisture product generated in the frameworktbé
ESA CCI Sptoject. A more comprehensive description of these input data is provided in
[RD7] I Y R A PataliAkcBss Requirements Document (DARM)3.1 Version 0.8 060
July 2017.
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6.1 In situ soil moisture datasets

6.1.1 The International Soil Moisture Net work (ISMN)

Since the early 1980s, several dedicated soil moisture field campaigns in the USA, Europe,
and Australia have resulted in both shéerm and longterm soil moisture datasets, mainly

used for satellite validation purposes. Given the increasimgrest of the scientific
community in understanding the relationship between soil moisture and climate change, the
in situstations network is currently expanding worldwide, measuring soil moisture routinely.
Nevertheless, the number of loAgrm in situmonitoring networks is still globally relatively
small. Complicating the ushtion of network data is the lack of a standard measurement
technique and a standard measurement protocol (Robetlal., 2000). Furthermore, the

fact that a large number of flerent organsations manage the various datasets makes the
use ofin situsoil moisture measurements for validation a time consuming effort.

To overcome many of these limitations, the ISMMQs://ismn.geo.tuwen.ac.a) has been
initiated to serve as a centraiid data hosting facility where globally availaliesitu soil
moisture measurements from operational networks and validation campaigns are collected,
harmonsed, and made available to users on aaust basis (Doriget al.,, 2011; 2013).

Currently May 2017) the ISMN contains data frorB6 networks and more than 2000
stations located ovemostly North AmericaEurope,and Asiabut alsoAfrica,South America
and AustraliaFigure6-1). The time period spanned by the entire databasas from 1950
until present, although most datasets have their start datethe last two decades.
Implementation of enhanced quality control and errdnaracterisatiorschemes provide a
universal quality measure of the measurements at the ISMN stations (Detigb, 2013).
For details on individual sites, see Dor@@l. (2011).
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Figure6-1 Map of the distribution of networks anstationed included in the ISMN. The distribution is
that onMay 2017.
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6.1.2 The North America Soil Moisture Database

The North America Soil Moisture Database (NASMD) has been developed by the Department

2F DS23ANI LIKeQa [/ fAYIGS { Orkitg w4 is pvhilablelfoiidatha K S ¢ ¢
downloading or oHdine visuakation athttp://soilmoisture.tamu.edu/Data/Map(Figure6-2).

Soil moisture data stored in thiRASMD are harmosed and qualitycontrolled. Along with

in situsoil moisture data, the NASMD provides metadata for the observation sites. Metadata
includes informationon the nearest townof the observation sitescountry and state; the

parent observatio network; the number of soil depths recording values of soil moisture

data; the instrument/sensor name; the temporal sampling frequency; and other useful
metadata information. Most of the sites covered by the NASMD are also in ISMN.

Figure 6-2 The NASMD interactive map showing all stations in the network. Screen shot from
http://soilmoisture.tamu.edu/Data/Map

6.1.3 The SwissSMEX Network

The SwissSMEX soibisture networkwas established in 2008 in Switzerland, within the
Swiss National Science Foundation project
(http://www.iac.ethz.ch/url/research/SwissSMEXThe network consists of 19 sites Bl
different locations at elevations below 1000 ms.h (Figure 6-3). Soil moisture and soil
temperature measurements are available every 10 minutes and are taken at one or more of
several depthgb, 10, 30, 5080 and 120 cnthe installation of the measuring instruments is
adapted to local conditions) using s#pecific calibrated soil moisture sensors (Mittelbach

et al, 2011). At each site meteorological measurements (e.g., precipitation, temperature,
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